Normalized defining polynomial
\( x^{20} - 8 x^{19} + 30 x^{18} - 64 x^{17} + 102 x^{16} - 448 x^{15} + 2984 x^{14} - 13792 x^{13} + 45612 x^{12} - 115500 x^{11} + 234180 x^{10} - 390744 x^{9} + 542848 x^{8} - 626536 x^{7} + 593720 x^{6} - 453760 x^{5} + 272960 x^{4} - 124656 x^{3} + 40704 x^{2} - 8480 x + 848 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4793116386199379622264055857152=2^{16}\cdot 53^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{24} a^{14} - \frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{24} a^{15} - \frac{1}{12} a^{11} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{360} a^{16} + \frac{1}{120} a^{15} + \frac{1}{72} a^{14} - \frac{7}{180} a^{13} - \frac{1}{180} a^{12} - \frac{17}{180} a^{11} + \frac{1}{18} a^{10} + \frac{1}{12} a^{9} + \frac{1}{9} a^{8} - \frac{1}{30} a^{7} + \frac{11}{45} a^{6} - \frac{1}{6} a^{5} + \frac{19}{90} a^{4} + \frac{22}{45} a^{3} - \frac{2}{15} a^{2} + \frac{11}{45} a - \frac{22}{45}$, $\frac{1}{360} a^{17} - \frac{1}{90} a^{15} + \frac{1}{360} a^{14} + \frac{1}{36} a^{13} + \frac{1}{180} a^{12} + \frac{1}{180} a^{11} + \frac{1}{12} a^{10} - \frac{5}{36} a^{9} - \frac{1}{5} a^{8} - \frac{7}{45} a^{7} - \frac{7}{30} a^{6} + \frac{19}{90} a^{5} - \frac{13}{90} a^{4} + \frac{1}{15} a^{3} - \frac{16}{45} a^{2} - \frac{2}{9} a - \frac{1}{5}$, $\frac{1}{4498920} a^{18} - \frac{1637}{1499640} a^{17} + \frac{1847}{4498920} a^{16} - \frac{21241}{2249460} a^{15} + \frac{21211}{1124730} a^{14} + \frac{11911}{562365} a^{13} - \frac{29053}{1124730} a^{12} + \frac{967}{62485} a^{11} - \frac{10199}{449892} a^{10} + \frac{40399}{374910} a^{9} - \frac{100468}{562365} a^{8} - \frac{1265}{37491} a^{7} - \frac{724}{562365} a^{6} - \frac{59456}{562365} a^{5} - \frac{31207}{187455} a^{4} - \frac{18022}{562365} a^{3} - \frac{28343}{112473} a^{2} - \frac{51061}{187455} a - \frac{42926}{187455}$, $\frac{1}{386907120} a^{19} - \frac{1}{64484520} a^{18} - \frac{2119}{19345356} a^{17} - \frac{184097}{193453560} a^{16} + \frac{121379}{96726780} a^{15} + \frac{143161}{10747420} a^{14} - \frac{3078361}{96726780} a^{13} - \frac{2146249}{96726780} a^{12} - \frac{1170926}{24181695} a^{11} + \frac{3868787}{96726780} a^{10} - \frac{2128571}{16121130} a^{9} - \frac{5381527}{48363390} a^{8} + \frac{701351}{16121130} a^{7} + \frac{1574941}{16121130} a^{6} - \frac{1413727}{9672678} a^{5} + \frac{645089}{16121130} a^{4} + \frac{249958}{537371} a^{3} - \frac{8701492}{24181695} a^{2} - \frac{601832}{1612113} a + \frac{1820701}{24181695}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8815064.44104 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 5.1.2382032.2 x5, 10.2.300726051798272.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.2382032.2 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |