Properties

Label 20.0.47929047471...3125.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{15}\cdot 7^{10}\cdot 11^{18}$
Root discriminant $76.56$
Ramified primes $5, 7, 11$
Class number $258256$ (GRH)
Class group $[2, 2, 64564]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1102456301, -219225038, 863744092, -382542201, 410339451, -176867903, 141833529, -45394658, 36820719, -7799638, 6805360, -921679, 849729, -71950, 68499, -3451, 3360, -91, 90, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 90*x^18 - 91*x^17 + 3360*x^16 - 3451*x^15 + 68499*x^14 - 71950*x^13 + 849729*x^12 - 921679*x^11 + 6805360*x^10 - 7799638*x^9 + 36820719*x^8 - 45394658*x^7 + 141833529*x^6 - 176867903*x^5 + 410339451*x^4 - 382542201*x^3 + 863744092*x^2 - 219225038*x + 1102456301)
 
gp: K = bnfinit(x^20 - x^19 + 90*x^18 - 91*x^17 + 3360*x^16 - 3451*x^15 + 68499*x^14 - 71950*x^13 + 849729*x^12 - 921679*x^11 + 6805360*x^10 - 7799638*x^9 + 36820719*x^8 - 45394658*x^7 + 141833529*x^6 - 176867903*x^5 + 410339451*x^4 - 382542201*x^3 + 863744092*x^2 - 219225038*x + 1102456301, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 90 x^{18} - 91 x^{17} + 3360 x^{16} - 3451 x^{15} + 68499 x^{14} - 71950 x^{13} + 849729 x^{12} - 921679 x^{11} + 6805360 x^{10} - 7799638 x^{9} + 36820719 x^{8} - 45394658 x^{7} + 141833529 x^{6} - 176867903 x^{5} + 410339451 x^{4} - 382542201 x^{3} + 863744092 x^{2} - 219225038 x + 1102456301 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(47929047471561558446078911407470703125=5^{15}\cdot 7^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $76.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(385=5\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{385}(64,·)$, $\chi_{385}(1,·)$, $\chi_{385}(246,·)$, $\chi_{385}(71,·)$, $\chi_{385}(13,·)$, $\chi_{385}(141,·)$, $\chi_{385}(272,·)$, $\chi_{385}(83,·)$, $\chi_{385}(344,·)$, $\chi_{385}(153,·)$, $\chi_{385}(36,·)$, $\chi_{385}(293,·)$, $\chi_{385}(167,·)$, $\chi_{385}(169,·)$, $\chi_{385}(237,·)$, $\chi_{385}(307,·)$, $\chi_{385}(309,·)$, $\chi_{385}(118,·)$, $\chi_{385}(379,·)$, $\chi_{385}(62,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{80415941} a^{16} - \frac{3881556}{80415941} a^{15} - \frac{1150415}{80415941} a^{14} + \frac{32061802}{80415941} a^{13} - \frac{7407639}{80415941} a^{12} - \frac{9441280}{80415941} a^{11} + \frac{15119286}{80415941} a^{10} + \frac{36515030}{80415941} a^{9} + \frac{31133217}{80415941} a^{8} - \frac{38607937}{80415941} a^{7} - \frac{2334298}{80415941} a^{6} - \frac{8848246}{80415941} a^{5} - \frac{21030612}{80415941} a^{4} + \frac{15887651}{80415941} a^{3} + \frac{31004591}{80415941} a^{2} - \frac{24024538}{80415941} a + \frac{3380100}{80415941}$, $\frac{1}{80415941} a^{17} + \frac{11326386}{80415941} a^{15} - \frac{31812090}{80415941} a^{14} - \frac{27376802}{80415941} a^{13} + \frac{27152632}{80415941} a^{12} - \frac{10943638}{80415941} a^{11} - \frac{36114580}{80415941} a^{10} - \frac{21907069}{80415941} a^{9} - \frac{9947858}{80415941} a^{8} + \frac{13758457}{80415941} a^{7} - \frac{11935641}{80415941} a^{6} + \frac{21692184}{80415941} a^{5} + \frac{26059535}{80415941} a^{4} + \frac{24147054}{80415941} a^{3} + \frac{38191154}{80415941} a^{2} - \frac{9411080}{80415941} a + \frac{25829568}{80415941}$, $\frac{1}{1424246731051} a^{18} - \frac{3720}{1424246731051} a^{17} + \frac{1081}{1424246731051} a^{16} + \frac{181821774900}{1424246731051} a^{15} + \frac{614772440369}{1424246731051} a^{14} - \frac{492675199597}{1424246731051} a^{13} + \frac{320925096276}{1424246731051} a^{12} - \frac{511222408317}{1424246731051} a^{11} + \frac{198197002106}{1424246731051} a^{10} + \frac{34390738147}{1424246731051} a^{9} - \frac{121958285787}{1424246731051} a^{8} + \frac{118102699376}{1424246731051} a^{7} + \frac{48660944658}{1424246731051} a^{6} - \frac{111904223058}{1424246731051} a^{5} + \frac{546641405130}{1424246731051} a^{4} + \frac{318185464555}{1424246731051} a^{3} + \frac{410857655424}{1424246731051} a^{2} + \frac{328608422815}{1424246731051} a + \frac{694622166446}{1424246731051}$, $\frac{1}{802865673019937542851616029310267250061272283715699} a^{19} + \frac{41848868381596174041553749059905887460}{802865673019937542851616029310267250061272283715699} a^{18} - \frac{1399471687905814457588137370951162633232486}{802865673019937542851616029310267250061272283715699} a^{17} + \frac{2491972828647615605066524702781345069770962}{802865673019937542851616029310267250061272283715699} a^{16} + \frac{351438573883829816677850358620236252139701805081259}{802865673019937542851616029310267250061272283715699} a^{15} - \frac{202737830852709192726088172070868599799797932395209}{802865673019937542851616029310267250061272283715699} a^{14} - \frac{188684354762757306523225178451085511491489415707430}{802865673019937542851616029310267250061272283715699} a^{13} - \frac{333303850783530446025523772427257717234095535679295}{802865673019937542851616029310267250061272283715699} a^{12} - \frac{391961873646828078748301632920496429430215844867797}{802865673019937542851616029310267250061272283715699} a^{11} - \frac{323779374294761560234600098975276341314624916357603}{802865673019937542851616029310267250061272283715699} a^{10} + \frac{20399199367718093167688301919121327732448850498593}{802865673019937542851616029310267250061272283715699} a^{9} - \frac{107735113730785182481113852805266819049473119992257}{802865673019937542851616029310267250061272283715699} a^{8} + \frac{231561993833226690479712879251702837160615233334245}{802865673019937542851616029310267250061272283715699} a^{7} - \frac{351584427275895957771261829323551581034727344444008}{802865673019937542851616029310267250061272283715699} a^{6} - \frac{3612533936192138689333677606611158175563788513922}{7365740119448968283042348892754745413406167740511} a^{5} - \frac{251504192940433923568274323181796171213275740943278}{802865673019937542851616029310267250061272283715699} a^{4} - \frac{229472466973029786870476303365871493070263012925063}{802865673019937542851616029310267250061272283715699} a^{3} - \frac{89602768388333058514025427909863717045378857643022}{802865673019937542851616029310267250061272283715699} a^{2} + \frac{322401643710807556548400273754656672961264483645511}{802865673019937542851616029310267250061272283715699} a + \frac{342068344074588418745718803817825340455094}{728251697860210735782819957151541782571999}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{64564}$, which has order $258256$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 140644.599182 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.741125.2, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R R R $20$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ $20$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
7Data not computed
$11$11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$