Properties

Label 20.0.47784295173...5856.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 11^{18}\cdot 31^{10}$
Root discriminant $96.37$
Ramified primes $2, 11, 31$
Class number $678342$ (GRH)
Class group $[678342]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10169681941, -6434708372, 8494460005, -4549085736, 3412831600, -1553286060, 852233649, -333136184, 145900146, -49158330, 17844628, -5165926, 1574718, -386422, 98580, -19892, 4144, -642, 103, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 103*x^18 - 642*x^17 + 4144*x^16 - 19892*x^15 + 98580*x^14 - 386422*x^13 + 1574718*x^12 - 5165926*x^11 + 17844628*x^10 - 49158330*x^9 + 145900146*x^8 - 333136184*x^7 + 852233649*x^6 - 1553286060*x^5 + 3412831600*x^4 - 4549085736*x^3 + 8494460005*x^2 - 6434708372*x + 10169681941)
 
gp: K = bnfinit(x^20 - 10*x^19 + 103*x^18 - 642*x^17 + 4144*x^16 - 19892*x^15 + 98580*x^14 - 386422*x^13 + 1574718*x^12 - 5165926*x^11 + 17844628*x^10 - 49158330*x^9 + 145900146*x^8 - 333136184*x^7 + 852233649*x^6 - 1553286060*x^5 + 3412831600*x^4 - 4549085736*x^3 + 8494460005*x^2 - 6434708372*x + 10169681941, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 103 x^{18} - 642 x^{17} + 4144 x^{16} - 19892 x^{15} + 98580 x^{14} - 386422 x^{13} + 1574718 x^{12} - 5165926 x^{11} + 17844628 x^{10} - 49158330 x^{9} + 145900146 x^{8} - 333136184 x^{7} + 852233649 x^{6} - 1553286060 x^{5} + 3412831600 x^{4} - 4549085736 x^{3} + 8494460005 x^{2} - 6434708372 x + 10169681941 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4778429517306302115692167241186705145856=2^{20}\cdot 11^{18}\cdot 31^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $96.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1364=2^{2}\cdot 11\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{1364}(1,·)$, $\chi_{1364}(993,·)$, $\chi_{1364}(371,·)$, $\chi_{1364}(1363,·)$, $\chi_{1364}(1301,·)$, $\chi_{1364}(1239,·)$, $\chi_{1364}(1241,·)$, $\chi_{1364}(1179,·)$, $\chi_{1364}(1055,·)$, $\chi_{1364}(929,·)$, $\chi_{1364}(931,·)$, $\chi_{1364}(743,·)$, $\chi_{1364}(621,·)$, $\chi_{1364}(433,·)$, $\chi_{1364}(435,·)$, $\chi_{1364}(309,·)$, $\chi_{1364}(185,·)$, $\chi_{1364}(123,·)$, $\chi_{1364}(125,·)$, $\chi_{1364}(63,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} + \frac{3}{23} a^{16} - \frac{9}{23} a^{15} - \frac{4}{23} a^{14} - \frac{10}{23} a^{13} + \frac{1}{23} a^{12} + \frac{5}{23} a^{11} + \frac{2}{23} a^{10} - \frac{4}{23} a^{9} - \frac{6}{23} a^{8} + \frac{7}{23} a^{7} - \frac{10}{23} a^{6} - \frac{3}{23} a^{5} - \frac{7}{23} a^{4} + \frac{10}{23} a^{3} - \frac{11}{23} a^{2} + \frac{2}{23} a + \frac{5}{23}$, $\frac{1}{8192685223971436401620823221521} a^{18} - \frac{9}{8192685223971436401620823221521} a^{17} - \frac{4015936587399631582555431162028}{8192685223971436401620823221521} a^{16} - \frac{643248196688692946039843589656}{8192685223971436401620823221521} a^{15} - \frac{123272165555811094425223258648}{8192685223971436401620823221521} a^{14} + \frac{3927063376971367815053002407281}{8192685223971436401620823221521} a^{13} - \frac{2655657462534623776770572526335}{8192685223971436401620823221521} a^{12} + \frac{1155809717015923233088106308829}{8192685223971436401620823221521} a^{11} + \frac{1187521166912210111527465134036}{8192685223971436401620823221521} a^{10} + \frac{786101501879682637310918164073}{8192685223971436401620823221521} a^{9} - \frac{329228307228078430480561020380}{8192685223971436401620823221521} a^{8} - \frac{1196750044463526364439999186351}{8192685223971436401620823221521} a^{7} + \frac{1387310563223077548069688760125}{8192685223971436401620823221521} a^{6} - \frac{2620567915904063067037115460350}{8192685223971436401620823221521} a^{5} - \frac{2001146813991481395451022716845}{8192685223971436401620823221521} a^{4} - \frac{2671235987088230864955841458516}{8192685223971436401620823221521} a^{3} + \frac{1610003225690197452323063814561}{8192685223971436401620823221521} a^{2} - \frac{1989451294809755676837457431309}{8192685223971436401620823221521} a + \frac{638918269136401259329696512158}{8192685223971436401620823221521}$, $\frac{1}{33989132464339105713823136853118938557} a^{19} + \frac{2074349}{33989132464339105713823136853118938557} a^{18} + \frac{351078548781082124736883559596481471}{33989132464339105713823136853118938557} a^{17} + \frac{5679906371996936126505747817713029554}{33989132464339105713823136853118938557} a^{16} - \frac{2110555950937497062092257988108166413}{33989132464339105713823136853118938557} a^{15} + \frac{14265658330790961133303738618183508145}{33989132464339105713823136853118938557} a^{14} - \frac{16362389538326121220273261074590167048}{33989132464339105713823136853118938557} a^{13} + \frac{15932147309277756188665418059282185929}{33989132464339105713823136853118938557} a^{12} - \frac{14249440598690633396762474611737087298}{33989132464339105713823136853118938557} a^{11} + \frac{550870978625214521021957102597393282}{1477788368014743726687962471874736459} a^{10} + \frac{3881213312514390712360181812535931306}{33989132464339105713823136853118938557} a^{9} - \frac{553177086292681501523200282795996206}{1477788368014743726687962471874736459} a^{8} - \frac{11430453735173544572383465454906856888}{33989132464339105713823136853118938557} a^{7} - \frac{14837387868111183370000340497981556753}{33989132464339105713823136853118938557} a^{6} - \frac{9859372324561185155497709147020795826}{33989132464339105713823136853118938557} a^{5} + \frac{8243089788459796557034320960524232895}{33989132464339105713823136853118938557} a^{4} - \frac{414010675303253516709241379777605276}{1477788368014743726687962471874736459} a^{3} + \frac{3859457552115906531057617063905002902}{33989132464339105713823136853118938557} a^{2} - \frac{4958330921887595904102019448751646701}{33989132464339105713823136853118938557} a - \frac{83887823742419873565925558740859148}{33989132464339105713823136853118938557}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{678342}$, which has order $678342$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 281202.490766 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-341}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{11}, \sqrt{-31})\), \(\Q(\zeta_{11})^+\), 10.0.6136912772340031.1, 10.0.69126185467638109184.1, \(\Q(\zeta_{44})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
11Data not computed
31Data not computed