Normalized defining polynomial
\( x^{20} - 10 x^{19} + 105 x^{18} - 660 x^{17} + 4290 x^{16} - 20650 x^{15} + 102455 x^{14} - 401835 x^{13} + 1632840 x^{12} - 5345635 x^{11} + 18339868 x^{10} - 50313265 x^{9} + 147612170 x^{8} - 334753815 x^{7} + 841255635 x^{6} - 1518197925 x^{5} + 3244122870 x^{4} - 4259691715 x^{3} + 7621501460 x^{2} - 5632826490 x + 8253340801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(477086454036646173335611820220947265625=5^{34}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(775=5^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{775}(1,·)$, $\chi_{775}(774,·)$, $\chi_{775}(714,·)$, $\chi_{775}(526,·)$, $\chi_{775}(464,·)$, $\chi_{775}(466,·)$, $\chi_{775}(404,·)$, $\chi_{775}(216,·)$, $\chi_{775}(154,·)$, $\chi_{775}(156,·)$, $\chi_{775}(94,·)$, $\chi_{775}(681,·)$, $\chi_{775}(619,·)$, $\chi_{775}(621,·)$, $\chi_{775}(559,·)$, $\chi_{775}(371,·)$, $\chi_{775}(309,·)$, $\chi_{775}(311,·)$, $\chi_{775}(249,·)$, $\chi_{775}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{707} a^{18} + \frac{225}{707} a^{17} + \frac{335}{707} a^{16} + \frac{248}{707} a^{15} - \frac{313}{707} a^{14} + \frac{5}{101} a^{13} + \frac{32}{101} a^{12} - \frac{10}{101} a^{11} - \frac{239}{707} a^{10} - \frac{54}{707} a^{9} - \frac{334}{707} a^{7} - \frac{36}{101} a^{6} - \frac{17}{101} a^{5} - \frac{130}{707} a^{4} + \frac{321}{707} a^{3} + \frac{221}{707} a^{2} + \frac{246}{707} a + \frac{137}{707}$, $\frac{1}{5401499416828037139329082670598563475199266140200512844441284646743} a^{19} + \frac{506987225681274461975619919064309392359964988818143560135226929}{5401499416828037139329082670598563475199266140200512844441284646743} a^{18} - \frac{1089448255353642409968074433381755842546490301483844005418014860775}{5401499416828037139329082670598563475199266140200512844441284646743} a^{17} + \frac{380864407289549259493326663506291860901936701683588674730827959182}{771642773832576734189868952942651925028466591457216120634469235249} a^{16} + \frac{1680403889385828356269192404785566043580958139079672411373378586536}{5401499416828037139329082670598563475199266140200512844441284646743} a^{15} - \frac{2209387022765926192504476101649550632070986759347342724170069999593}{5401499416828037139329082670598563475199266140200512844441284646743} a^{14} + \frac{268055518587735361251682014237626052205099850375908475981813238615}{771642773832576734189868952942651925028466591457216120634469235249} a^{13} + \frac{284151207923153386807457715787514349966604280131715254268278956208}{771642773832576734189868952942651925028466591457216120634469235249} a^{12} - \frac{2069002635884900455065182949393124416700619186708606604165641400685}{5401499416828037139329082670598563475199266140200512844441284646743} a^{11} + \frac{2447702972699262935888826789785932254007558033961313754596200712443}{5401499416828037139329082670598563475199266140200512844441284646743} a^{10} - \frac{1177887390882529930821566266196942011459646188186919412236929792298}{5401499416828037139329082670598563475199266140200512844441284646743} a^{9} - \frac{1559861147852850739208568855448969974011574895050393071520886880982}{5401499416828037139329082670598563475199266140200512844441284646743} a^{8} - \frac{1167286232136912787449274436567572157791530698352523902699161120502}{5401499416828037139329082670598563475199266140200512844441284646743} a^{7} + \frac{259010433654242139557793062253943187736507480454200304829560193299}{771642773832576734189868952942651925028466591457216120634469235249} a^{6} - \frac{1039574319984400556608831044457880462197753295839118531600063775391}{5401499416828037139329082670598563475199266140200512844441284646743} a^{5} + \frac{1573785589191364803959800567598505615627707325847376973080681152007}{5401499416828037139329082670598563475199266140200512844441284646743} a^{4} - \frac{1020757733763249053220130130683428105020657088156863497287554327471}{5401499416828037139329082670598563475199266140200512844441284646743} a^{3} - \frac{781289092002239604471559187961845989553070646333771868899689958883}{5401499416828037139329082670598563475199266140200512844441284646743} a^{2} - \frac{76026824732864199770891763193580813418188773200087948971929348883}{771642773832576734189868952942651925028466591457216120634469235249} a + \frac{1048835202234782096766963159607769704581071658871884413529879026484}{5401499416828037139329082670598563475199266140200512844441284646743}$
Class group and class number
$C_{711330}$, which has order $711330$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-155}) \), \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{5}, \sqrt{-31})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.21842308807373046875.3, 10.0.4368461761474609375.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $31$ | 31.10.5.2 | $x^{10} - 923521 x^{2} + 286291510$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 31.10.5.2 | $x^{10} - 923521 x^{2} + 286291510$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |