Normalized defining polynomial
\( x^{20} - 6 x^{19} + 16 x^{18} - 33 x^{17} + 57 x^{16} - 66 x^{15} + 54 x^{14} - 15 x^{13} - 36 x^{12} + 78 x^{11} - 99 x^{10} + 78 x^{9} - 36 x^{8} - 15 x^{7} + 54 x^{6} - 66 x^{5} + 57 x^{4} - 33 x^{3} + 16 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47644389152686853402121=3^{18}\cdot 223^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{425827} a^{18} - \frac{23024}{425827} a^{17} - \frac{188168}{425827} a^{16} + \frac{187598}{425827} a^{15} - \frac{211}{1583} a^{14} - \frac{146238}{425827} a^{13} + \frac{662}{425827} a^{12} - \frac{187748}{425827} a^{11} - \frac{135457}{425827} a^{10} - \frac{194069}{425827} a^{9} - \frac{135457}{425827} a^{8} - \frac{187748}{425827} a^{7} + \frac{662}{425827} a^{6} - \frac{146238}{425827} a^{5} - \frac{211}{1583} a^{4} + \frac{187598}{425827} a^{3} - \frac{188168}{425827} a^{2} - \frac{23024}{425827} a + \frac{1}{425827}$, $\frac{1}{5535751} a^{19} + \frac{6}{5535751} a^{18} + \frac{2278689}{5535751} a^{17} - \frac{531717}{5535751} a^{16} - \frac{115561}{5535751} a^{15} - \frac{17118}{5535751} a^{14} + \frac{431092}{5535751} a^{13} + \frac{579994}{5535751} a^{12} - \frac{1402020}{5535751} a^{11} - \frac{160177}{5535751} a^{10} + \frac{2490627}{5535751} a^{9} - \frac{2282991}{5535751} a^{8} - \frac{840074}{5535751} a^{7} + \frac{1047331}{5535751} a^{6} - \frac{1329637}{5535751} a^{5} + \frac{1594199}{5535751} a^{4} - \frac{2376105}{5535751} a^{3} + \frac{535142}{5535751} a^{2} + \frac{1615204}{5535751} a + \frac{2577992}{5535751}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{68925}{20579} a^{19} + \frac{385235}{20579} a^{18} - \frac{945974}{20579} a^{17} + \frac{1890664}{20579} a^{16} - \frac{3153167}{20579} a^{15} + \frac{3248859}{20579} a^{14} - \frac{2372033}{20579} a^{13} - \frac{2471}{20579} a^{12} + \frac{2549525}{20579} a^{11} - \frac{4377065}{20579} a^{10} + \frac{5032595}{20579} a^{9} - \frac{3272213}{20579} a^{8} + \frac{1066688}{20579} a^{7} + \frac{1556242}{20579} a^{6} - \frac{3139562}{20579} a^{5} + \frac{3272148}{20579} a^{4} - \frac{2553503}{20579} a^{3} + \frac{1167046}{20579} a^{2} - \frac{566885}{20579} a + \frac{161838}{20579} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3133.07637196 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.3.18063.1, 10.0.978815907.1, 10.0.72758649087.1, 10.6.218275947261.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 223 | Data not computed | ||||||