Normalized defining polynomial
\( x^{20} + 60 x^{16} - 400 x^{14} - 140 x^{13} + 1100 x^{12} + 960 x^{11} - 3960 x^{10} - 1800 x^{9} + 13600 x^{8} - 800 x^{7} - 18720 x^{6} + 2024 x^{5} + 9200 x^{4} - 160 x^{3} + 80 x + 8 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47225249792000000000000000000000=2^{34}\cdot 5^{21}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{20} a^{15} + \frac{1}{5} a^{10} - \frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{20} a^{16} + \frac{1}{5} a^{11} - \frac{1}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{60} a^{17} - \frac{1}{12} a^{14} - \frac{1}{10} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{7}{30} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{5} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{900} a^{18} - \frac{7}{900} a^{17} + \frac{1}{300} a^{16} - \frac{7}{450} a^{15} + \frac{1}{45} a^{14} - \frac{6}{25} a^{13} + \frac{16}{75} a^{12} - \frac{49}{450} a^{11} - \frac{103}{450} a^{10} + \frac{8}{45} a^{9} + \frac{83}{450} a^{8} + \frac{7}{225} a^{7} + \frac{92}{225} a^{6} + \frac{49}{225} a^{5} - \frac{2}{15} a^{4} + \frac{82}{225} a^{3} - \frac{44}{225} a^{2} + \frac{32}{75} a + \frac{47}{225}$, $\frac{1}{2007681946359438643853210048700} a^{19} - \frac{380003398265905393164470473}{1003840973179719321926605024350} a^{18} + \frac{2124312680812390812881411963}{1003840973179719321926605024350} a^{17} - \frac{7777602651742404046156605674}{501920486589859660963302512175} a^{16} + \frac{3131244481953651480606659629}{501920486589859660963302512175} a^{15} + \frac{15263594303743510847166425476}{501920486589859660963302512175} a^{14} - \frac{80968874434477258038407805139}{334613657726573107308868341450} a^{13} - \frac{7808164127692167469009348243}{1003840973179719321926605024350} a^{12} + \frac{16112788967927930979710517767}{111537885908857702436289447150} a^{11} + \frac{823099441527626051366056429}{10793988958921713138995752950} a^{10} - \frac{76334576871850140969935053079}{334613657726573107308868341450} a^{9} + \frac{37371845358417640618229347142}{167306828863286553654434170725} a^{8} + \frac{28825985249309214071315733244}{501920486589859660963302512175} a^{7} - \frac{147271003701595147157537844124}{501920486589859660963302512175} a^{6} - \frac{137856925837622237146593753391}{501920486589859660963302512175} a^{5} + \frac{129468749465750431627235439652}{501920486589859660963302512175} a^{4} + \frac{13891581813980317566120785987}{55768942954428851218144723575} a^{3} - \frac{123119493259295266380069208663}{501920486589859660963302512175} a^{2} - \frac{136261931440972408489086701152}{501920486589859660963302512175} a - \frac{84950622174759935521443361283}{501920486589859660963302512175}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{39013913531359184525}{715461855720418299978} a^{19} + \frac{1446073488390607315}{238487285240139433326} a^{18} - \frac{403756309838218550}{357730927860209149989} a^{17} + \frac{215538187451108840}{357730927860209149989} a^{16} - \frac{780265508997704197381}{238487285240139433326} a^{15} + \frac{130361888598309392650}{357730927860209149989} a^{14} + \frac{5185749820332637798285}{238487285240139433326} a^{13} + \frac{1876525831743628034900}{357730927860209149989} a^{12} - \frac{21598555216433323090355}{357730927860209149989} a^{11} - \frac{1055292243189015205399}{23079414700658654838} a^{10} + \frac{78852201996013925263375}{357730927860209149989} a^{9} + \frac{26300516271751297431250}{357730927860209149989} a^{8} - \frac{89140466809531119330250}{119243642620069716663} a^{7} + \frac{15048798347392974779315}{119243642620069716663} a^{6} + \frac{357690717580880624813783}{357730927860209149989} a^{5} - \frac{77463478877276102562100}{357730927860209149989} a^{4} - \frac{167803508152543425660830}{357730927860209149989} a^{3} + \frac{20234944650223835014550}{357730927860209149989} a^{2} - \frac{3832828609403781660110}{357730927860209149989} a - \frac{1138629933805061206727}{357730927860209149989} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32474897.1206 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.320.1, 5.5.2450000.1, 10.0.384160000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.11.8 | $x^{10} + 20 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |
| 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |