Normalized defining polynomial
\( x^{20} - x^{19} + 6 x^{17} + 6 x^{16} - 10 x^{15} + 6 x^{14} + 35 x^{13} + 7 x^{12} - 43 x^{11} + 21 x^{10} + 81 x^{9} - 11 x^{8} - 85 x^{7} - 16 x^{6} + 46 x^{5} + 20 x^{4} - 11 x^{3} - 7 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(471985256475970094291797=11^{2}\cdot 17^{4}\cdot 157\cdot 4153^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 17, 157, 4153$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{21} a^{17} + \frac{1}{21} a^{16} + \frac{1}{7} a^{15} - \frac{3}{7} a^{14} - \frac{1}{7} a^{13} - \frac{3}{7} a^{11} - \frac{1}{21} a^{10} - \frac{4}{21} a^{9} - \frac{1}{21} a^{8} - \frac{5}{21} a^{7} + \frac{4}{21} a^{6} + \frac{1}{3} a^{5} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} + \frac{4}{21} a^{2} + \frac{2}{21} a - \frac{2}{7}$, $\frac{1}{147} a^{18} - \frac{2}{147} a^{17} + \frac{2}{21} a^{16} + \frac{17}{147} a^{15} - \frac{13}{49} a^{14} - \frac{4}{49} a^{13} - \frac{3}{49} a^{12} + \frac{47}{147} a^{11} - \frac{1}{147} a^{10} - \frac{22}{49} a^{9} + \frac{26}{147} a^{8} + \frac{47}{147} a^{7} + \frac{3}{49} a^{6} + \frac{29}{147} a^{5} + \frac{2}{21} a^{4} + \frac{37}{147} a^{3} + \frac{53}{147} a^{2} - \frac{61}{147} a + \frac{4}{147}$, $\frac{1}{4787937} a^{19} + \frac{6232}{4787937} a^{18} + \frac{84566}{4787937} a^{17} - \frac{257177}{4787937} a^{16} + \frac{974660}{4787937} a^{15} - \frac{4138}{32571} a^{14} - \frac{85390}{531993} a^{13} - \frac{1501804}{4787937} a^{12} - \frac{1011481}{4787937} a^{11} - \frac{53717}{227997} a^{10} - \frac{6917}{75999} a^{9} - \frac{180920}{531993} a^{8} + \frac{2269177}{4787937} a^{7} - \frac{187792}{435267} a^{6} + \frac{1459651}{4787937} a^{5} - \frac{34168}{145089} a^{4} + \frac{2305763}{4787937} a^{3} + \frac{713864}{4787937} a^{2} - \frac{101048}{1595979} a + \frac{826576}{4787937}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4027.0552228 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3932160 |
| The 506 conjugacy class representatives for t20n1015 are not computed |
| Character table for t20n1015 is not computed |
Intermediate fields
| 5.5.70601.1, 10.4.54829513211.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.8.0.1}{8} }$ | $20$ | $20$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $17$ | 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $157$ | $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 157.2.1.2 | $x^{2} + 785$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 157.6.0.1 | $x^{6} - x + 61$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 157.6.0.1 | $x^{6} - x + 61$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 4153 | Data not computed | ||||||