Normalized defining polynomial
\( x^{20} - 8 x^{19} + 37 x^{18} - 106 x^{17} + 193 x^{16} - 374 x^{15} + 839 x^{14} - 2402 x^{13} + 5559 x^{12} - 10070 x^{11} + 21804 x^{10} - 25204 x^{9} + 55041 x^{8} - 39686 x^{7} + 185033 x^{6} - 69594 x^{5} + 219405 x^{4} - 149958 x^{3} + 258894 x^{2} - 45198 x + 240003 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4717200911168296461448196340581376=2^{10}\cdot 3^{4}\cdot 23^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{15} - \frac{1}{3} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{17} + \frac{1}{18} a^{16} - \frac{1}{9} a^{15} - \frac{1}{18} a^{14} + \frac{1}{18} a^{13} - \frac{1}{9} a^{12} + \frac{4}{9} a^{11} + \frac{7}{18} a^{10} - \frac{1}{2} a^{9} + \frac{7}{18} a^{8} + \frac{1}{3} a^{7} - \frac{7}{18} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} - \frac{7}{18} a^{3} - \frac{1}{6} a$, $\frac{1}{18} a^{18} + \frac{2}{9} a^{15} - \frac{2}{9} a^{14} - \frac{1}{3} a^{13} - \frac{5}{18} a^{12} - \frac{7}{18} a^{11} + \frac{4}{9} a^{10} + \frac{1}{18} a^{9} + \frac{4}{9} a^{8} + \frac{4}{9} a^{7} - \frac{5}{18} a^{6} + \frac{7}{18} a^{5} - \frac{5}{18} a^{4} + \frac{1}{18} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{1964941498161264254938051152044599882625979694240067502} a^{19} + \frac{4738045490057692047655280979927765002849239244393161}{1964941498161264254938051152044599882625979694240067502} a^{18} + \frac{45782774068857766486700521691992634036381469525085615}{1964941498161264254938051152044599882625979694240067502} a^{17} - \frac{62052826707415455398300849406088811555947151846666677}{1964941498161264254938051152044599882625979694240067502} a^{16} - \frac{227847504653008401276045296303280875266493076281083798}{982470749080632127469025576022299941312989847120033751} a^{15} + \frac{679630890373341783059735560386422276699384846023217341}{1964941498161264254938051152044599882625979694240067502} a^{14} + \frac{107801406075809793872084813044235598008877495576298000}{982470749080632127469025576022299941312989847120033751} a^{13} + \frac{308111567404257478110899608475360725912052761971198872}{982470749080632127469025576022299941312989847120033751} a^{12} - \frac{276718235190402463346232693585555974874891800800042075}{654980499387088084979350384014866627541993231413355834} a^{11} - \frac{410660531615621861466599633554032003190043730027260974}{982470749080632127469025576022299941312989847120033751} a^{10} - \frac{92855455298494926434658622689287018587788761458263400}{327490249693544042489675192007433313770996615706677917} a^{9} + \frac{108290722119972899031674232419821127879841836482260371}{1964941498161264254938051152044599882625979694240067502} a^{8} - \frac{45452904800339994683291042418109911277823503980011971}{218326833129029361659783461338288875847331077137785278} a^{7} + \frac{164330143060683197366114129062352140490856187975291723}{1964941498161264254938051152044599882625979694240067502} a^{6} + \frac{355378715521422967804387030947579883209459089636541253}{982470749080632127469025576022299941312989847120033751} a^{5} - \frac{24747587249744246877620109298542595061304406875614512}{327490249693544042489675192007433313770996615706677917} a^{4} + \frac{96395479424015708648608757268644541501027340924999699}{327490249693544042489675192007433313770996615706677917} a^{3} - \frac{43754610200366615138552345150533939676385948369184375}{218326833129029361659783461338288875847331077137785278} a^{2} - \frac{34161572798088456594972350530437484624943207896167831}{72775611043009787219927820446096291949110359045928426} a + \frac{19894218105955443069428184976955592516864199857156655}{72775611043009787219927820446096291949110359045928426}$
Class group and class number
$C_{2}\times C_{2}\times C_{96}$, which has order $384$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n347 are not computed |
| Character table for t20n347 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||