Normalized defining polynomial
\( x^{20} - 2 x^{19} - 96 x^{17} + 346 x^{16} - 8040 x^{15} + 50894 x^{14} + 32718 x^{13} + 1049707 x^{12} - 2397999 x^{11} - 10904667 x^{10} - 122674031 x^{9} + 673956560 x^{8} + 1783530285 x^{7} - 911324443 x^{6} - 17686730229 x^{5} + 202954019677 x^{4} - 785792800744 x^{3} + 3628004636611 x^{2} + 21873265752274 x + 79154483718199 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4709607838486813481044153118961614213=7^{15}\cdot 11^{9}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{19} + \frac{6497436279113146548503162196482416242566473427103788827675493989317636346927853390803145843749177887863055428341637351567786273059}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{18} - \frac{10496682858236389677488051953232435494991511563695859464802510370716171182193050278188126678177044792184996874394239742920980331451}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{17} + \frac{1544962353468861028993826552188162870536755419911376915281061830246622529011399260370704675650250422871898968388239764815420919115}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{16} - \frac{16583026167207409061361891441948274772136441933292332832416845493455011242981441565564881229378873755550614532152461359133015911518}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{15} - \frac{30919366571787102470036495229460697823793648698159866678703583831441637736181365663240252603847654565731096102491147429452737939043}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{14} + \frac{13644750612499519843133355877043306460930934878665161930187654273543732776026719112281400343055367650319821429027530541744996645073}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{13} + \frac{841675399699977433348922886707675073358670585039486376561205352815723435276556483332689098428827999119084660132427989405811688155}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{12} - \frac{3339357547147905707907813512376971658814754038843675302237286229960982793653446828097820189075209447100733132062912489063568749167}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{11} - \frac{18727734422821636496975945620353655083917251115373453493129014032523965778090191330093491184047204205413623210267671982890982646771}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{10} - \frac{23880834436965250580386430067779724812142009577142739004804112004022248901940883770124660251580193198409444241768917784032594043738}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{9} - \frac{26588829165862798549262104373303923049203477474646737968894902512778764534125056204261891168621983215160251070865156258772007779336}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{8} + \frac{21576895577638926126315488481398871081427545508323039125387951763722244678017403235384655450370500582438422852225376334026211736125}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{7} + \frac{1975452068446800782296609773237686293156991306209815906077957020861130313703590037673499492313815164337700474922532214722168236073}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{6} + \frac{16230975694517291867128282978332331775345154132437830903192714068967759517016400837810736269244712713882173513985123105873039900009}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{5} - \frac{3840475594558383929320545519624293114795845479909551138932553300052684741154792173468631069389133680517978290411913097220769990873}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{4} + \frac{11197521855774211365186745162138783877921094877200134434173061067595188167856516530714495893840118292778975870704041539877127816631}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{3} + \frac{27368479422575938648001920814235618664907111934128233823531252750323019154843989323751543210266166388750184888358906532270587940290}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a^{2} + \frac{14332056571729418752848449482513234267612651653399385004840265968146096701964164700840295112529915945258870051073930992022649901036}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409} a + \frac{20880425640683693566194006835348809047773742734599373037730740870121558081688799345647751463364554235714425970018206703250936300411}{62718554277129854059129434435774281960897421007759091725776056425138942515612804839657607752532030364915942104473223301519344163409}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.3173093.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | 29.10.5.1 | $x^{10} - 1682 x^{6} + 707281 x^{2} - 2481849029$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |