Normalized defining polynomial
\( x^{20} + 27 x^{18} + 277 x^{16} + 1386 x^{14} + 3694 x^{12} + 5493 x^{10} + 4588 x^{8} + 2079 x^{6} + 470 x^{4} + 45 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(470525233802978928640000000000=2^{20}\cdot 5^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(220=2^{2}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{220}(1,·)$, $\chi_{220}(69,·)$, $\chi_{220}(71,·)$, $\chi_{220}(9,·)$, $\chi_{220}(141,·)$, $\chi_{220}(81,·)$, $\chi_{220}(89,·)$, $\chi_{220}(201,·)$, $\chi_{220}(91,·)$, $\chi_{220}(159,·)$, $\chi_{220}(31,·)$, $\chi_{220}(169,·)$, $\chi_{220}(199,·)$, $\chi_{220}(111,·)$, $\chi_{220}(49,·)$, $\chi_{220}(179,·)$, $\chi_{220}(181,·)$, $\chi_{220}(119,·)$, $\chi_{220}(59,·)$, $\chi_{220}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{41507731} a^{18} + \frac{2426979}{41507731} a^{16} + \frac{6970730}{41507731} a^{14} - \frac{10869172}{41507731} a^{12} - \frac{7022661}{41507731} a^{10} - \frac{5696945}{41507731} a^{8} + \frac{13139048}{41507731} a^{6} - \frac{18931934}{41507731} a^{4} + \frac{4730290}{41507731} a^{2} + \frac{20043876}{41507731}$, $\frac{1}{41507731} a^{19} + \frac{2426979}{41507731} a^{17} + \frac{6970730}{41507731} a^{15} - \frac{10869172}{41507731} a^{13} - \frac{7022661}{41507731} a^{11} - \frac{5696945}{41507731} a^{9} + \frac{13139048}{41507731} a^{7} - \frac{18931934}{41507731} a^{5} + \frac{4730290}{41507731} a^{3} + \frac{20043876}{41507731} a$
Class group and class number
$C_{31}$, which has order $31$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{14370}{125401} a^{19} - \frac{416120}{125401} a^{17} - \frac{4714345}{125401} a^{15} - \frac{27040100}{125401} a^{13} - \frac{85587256}{125401} a^{11} - \frac{153298999}{125401} a^{9} - \frac{152848944}{125401} a^{7} - \frac{79313708}{125401} a^{5} - \frac{18211390}{125401} a^{3} - \frac{1204854}{125401} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), \(\Q(i, \sqrt{5})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.219503494144.1, 10.0.685948419200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |