Normalized defining polynomial
\( x^{20} - 6 x^{19} + 61 x^{18} - 296 x^{17} + 1352 x^{16} - 5768 x^{15} + 17758 x^{14} - 57078 x^{13} + 160191 x^{12} - 363102 x^{11} + 895115 x^{10} - 1791172 x^{9} + 3045364 x^{8} - 5325116 x^{7} + 7917568 x^{6} - 7916862 x^{5} + 9613058 x^{4} - 8034072 x^{3} + 780298 x^{2} + 7547296 x + 2049074 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4689793927593682195251200000000000000=2^{28}\cdot 5^{14}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{24} a^{16} - \frac{1}{12} a^{15} - \frac{1}{24} a^{14} - \frac{1}{8} a^{12} - \frac{5}{12} a^{11} - \frac{7}{24} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{5}{12} a^{2} + \frac{1}{3} a + \frac{5}{12}$, $\frac{1}{48} a^{17} - \frac{1}{48} a^{16} - \frac{1}{16} a^{15} - \frac{1}{48} a^{14} - \frac{1}{16} a^{13} + \frac{11}{48} a^{12} + \frac{7}{48} a^{11} + \frac{19}{48} a^{10} - \frac{1}{24} a^{9} + \frac{1}{4} a^{8} + \frac{3}{8} a^{7} + \frac{5}{12} a^{6} + \frac{1}{8} a^{5} - \frac{1}{12} a^{4} - \frac{1}{24} a^{3} - \frac{1}{24} a^{2} + \frac{3}{8} a - \frac{7}{24}$, $\frac{1}{10896} a^{18} + \frac{113}{10896} a^{17} + \frac{47}{10896} a^{16} + \frac{337}{10896} a^{15} - \frac{785}{10896} a^{14} - \frac{427}{10896} a^{13} - \frac{2375}{10896} a^{12} + \frac{4409}{10896} a^{11} - \frac{611}{1362} a^{10} + \frac{46}{681} a^{9} - \frac{1099}{5448} a^{8} - \frac{379}{1362} a^{7} + \frac{1211}{5448} a^{6} + \frac{302}{681} a^{5} - \frac{829}{5448} a^{4} - \frac{1667}{5448} a^{3} - \frac{2365}{5448} a^{2} + \frac{1219}{5448} a + \frac{251}{2724}$, $\frac{1}{8483004743563911681840078619106235610143661254799073143616544} a^{19} + \frac{84637373450907578775984802758459578862868995479355955411}{8483004743563911681840078619106235610143661254799073143616544} a^{18} - \frac{1519886597507641725832639436342333612651701184349338919475}{1413834123927318613640013103184372601690610209133178857269424} a^{17} - \frac{14384952144400446135960425287009164990806502479072430208739}{4241502371781955840920039309553117805071830627399536571808272} a^{16} - \frac{79266697520968375142599596815935681727157449806329579033393}{1413834123927318613640013103184372601690610209133178857269424} a^{15} + \frac{326019860596977758958237068879036085344953386582036810301955}{4241502371781955840920039309553117805071830627399536571808272} a^{14} + \frac{502384962968170887913377090638151977534506214829541382680769}{2120751185890977920460019654776558902535915313699768285904136} a^{13} - \frac{119510639589961498376655505640227853773718196498856540317151}{4241502371781955840920039309553117805071830627399536571808272} a^{12} - \frac{429567131496140469657613762150681275971618686491800123314353}{2827668247854637227280026206368745203381220418266357714538848} a^{11} - \frac{3970102963521050169429958934947503687399254846473652776992745}{8483004743563911681840078619106235610143661254799073143616544} a^{10} + \frac{85528330039434900568326676360183688222622863936669465126771}{176729265490914826705001637898046575211326276141647357158678} a^{9} + \frac{126320198240446162517487455373962534784708347672442646837499}{353458530981829653410003275796093150422652552283294714317356} a^{8} - \frac{86001393366112632638739979559938661819247611965256367247301}{176729265490914826705001637898046575211326276141647357158678} a^{7} - \frac{68504781016124425870950250253957267811201154392353710650307}{265093898236372240057502456847069862816989414212471035738017} a^{6} + \frac{566310277638842560774521467376067878787075544986260211631261}{2120751185890977920460019654776558902535915313699768285904136} a^{5} + \frac{1683962604738446953253835434279385596895548688537049942483025}{4241502371781955840920039309553117805071830627399536571808272} a^{4} + \frac{219459469433630480313931127056305340815473345508808163998553}{530187796472744480115004913694139725633978828424942071476034} a^{3} + \frac{110747656329284276260379223667579031073837489718487024653583}{1060375592945488960230009827388279451267957656849884142952068} a^{2} + \frac{414229466108696846588525716768366773032309807782176592880019}{1413834123927318613640013103184372601690610209133178857269424} a + \frac{1935973832681762296318880564268947488527950175923957186278529}{4241502371781955840920039309553117805071830627399536571808272}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2581061275.0473027 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.1965200.1, 5.1.578000.2, 10.2.5679428000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||