Properties

Label 20.0.46639966855...0000.2
Degree $20$
Signature $[0, 10]$
Discriminant $2^{55}\cdot 5^{32}\cdot 11^{18}$
Root discriminant $764.61$
Ramified primes $2, 5, 11$
Class number $13108050250$ (GRH)
Class group $[5, 2621610050]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15613369350198257, 21572531775270080, 17430947729479900, 9520797872018840, 3836312578497410, 1169108267232268, 272661356669900, 48294891164740, 6227682310245, 495397268300, 2279418570, -5543554500, -752736160, -33013640, 3502950, 583836, 21450, -2420, -220, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 220*x^18 - 2420*x^17 + 21450*x^16 + 583836*x^15 + 3502950*x^14 - 33013640*x^13 - 752736160*x^12 - 5543554500*x^11 + 2279418570*x^10 + 495397268300*x^9 + 6227682310245*x^8 + 48294891164740*x^7 + 272661356669900*x^6 + 1169108267232268*x^5 + 3836312578497410*x^4 + 9520797872018840*x^3 + 17430947729479900*x^2 + 21572531775270080*x + 15613369350198257)
 
gp: K = bnfinit(x^20 - 220*x^18 - 2420*x^17 + 21450*x^16 + 583836*x^15 + 3502950*x^14 - 33013640*x^13 - 752736160*x^12 - 5543554500*x^11 + 2279418570*x^10 + 495397268300*x^9 + 6227682310245*x^8 + 48294891164740*x^7 + 272661356669900*x^6 + 1169108267232268*x^5 + 3836312578497410*x^4 + 9520797872018840*x^3 + 17430947729479900*x^2 + 21572531775270080*x + 15613369350198257, 1)
 

Normalized defining polynomial

\( x^{20} - 220 x^{18} - 2420 x^{17} + 21450 x^{16} + 583836 x^{15} + 3502950 x^{14} - 33013640 x^{13} - 752736160 x^{12} - 5543554500 x^{11} + 2279418570 x^{10} + 495397268300 x^{9} + 6227682310245 x^{8} + 48294891164740 x^{7} + 272661356669900 x^{6} + 1169108267232268 x^{5} + 3836312578497410 x^{4} + 9520797872018840 x^{3} + 17430947729479900 x^{2} + 21572531775270080 x + 15613369350198257 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4663996685529944093936844800000000000000000000000000000000=2^{55}\cdot 5^{32}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $764.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4400=2^{4}\cdot 5^{2}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{4400}(1,·)$, $\chi_{4400}(901,·)$, $\chi_{4400}(2721,·)$, $\chi_{4400}(521,·)$, $\chi_{4400}(3021,·)$, $\chi_{4400}(941,·)$, $\chi_{4400}(3281,·)$, $\chi_{4400}(3781,·)$, $\chi_{4400}(2201,·)$, $\chi_{4400}(4061,·)$, $\chi_{4400}(1861,·)$, $\chi_{4400}(3041,·)$, $\chi_{4400}(361,·)$, $\chi_{4400}(1581,·)$, $\chi_{4400}(3101,·)$, $\chi_{4400}(2561,·)$, $\chi_{4400}(821,·)$, $\chi_{4400}(841,·)$, $\chi_{4400}(1081,·)$, $\chi_{4400}(3141,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{11} a^{6}$, $\frac{1}{11} a^{7}$, $\frac{1}{11} a^{8}$, $\frac{1}{121} a^{9} + \frac{3}{11} a^{4}$, $\frac{1}{121} a^{10}$, $\frac{1}{121} a^{11}$, $\frac{1}{1331} a^{12} - \frac{4}{121} a^{8} - \frac{5}{121} a^{7} + \frac{4}{11} a^{4} - \frac{1}{11} a^{3} - \frac{2}{11} a^{2}$, $\frac{1}{1331} a^{13} - \frac{5}{121} a^{8} - \frac{2}{11} a^{3}$, $\frac{1}{1331} a^{14} + \frac{2}{11} a^{4}$, $\frac{1}{1331} a^{15}$, $\frac{1}{629563} a^{16} + \frac{15}{57233} a^{15} - \frac{9}{57233} a^{14} + \frac{17}{57233} a^{13} - \frac{16}{57233} a^{12} - \frac{90}{57233} a^{11} - \frac{6}{5203} a^{10} - \frac{6}{5203} a^{9} - \frac{13}{473} a^{8} + \frac{36}{5203} a^{7} - \frac{50}{5203} a^{6} - \frac{19}{473} a^{5} + \frac{136}{473} a^{4} + \frac{67}{473} a^{3} + \frac{109}{473} a^{2} + \frac{148}{473} a + \frac{15}{43}$, $\frac{1}{629563} a^{17} + \frac{10}{57233} a^{15} - \frac{3}{57233} a^{14} + \frac{17}{57233} a^{13} + \frac{13}{57233} a^{12} + \frac{1}{473} a^{11} - \frac{5}{5203} a^{10} - \frac{13}{5203} a^{9} + \frac{196}{5203} a^{8} + \frac{73}{5203} a^{7} + \frac{3}{473} a^{5} + \frac{202}{473} a^{4} + \frac{105}{473} a^{3} + \frac{8}{473} a^{2} - \frac{12}{43} a + \frac{19}{43}$, $\frac{1}{6963222605638808419096678852609711627} a^{18} + \frac{2455319228713175646182772255792}{6963222605638808419096678852609711627} a^{17} + \frac{2636928644611212155067148516546}{6963222605638808419096678852609711627} a^{16} + \frac{162569104485718611636658677529316}{633020236876255310826970804782701057} a^{15} + \frac{17975812309487509541708987028923}{633020236876255310826970804782701057} a^{14} + \frac{3863563855870442741659623886864}{14721400857587332809929553599597699} a^{13} - \frac{2574016107123297703547013869840}{57547294261477755529724618616609187} a^{12} - \frac{1611896748335200210266961298895342}{633020236876255310826970804782701057} a^{11} - \frac{15383176651095518297408254478423}{57547294261477755529724618616609187} a^{10} + \frac{18496899902380200802557295945795}{5231572205588886866338601692419017} a^{9} + \frac{63477042090586514652743834054810}{57547294261477755529724618616609187} a^{8} + \frac{1062424126141965887010222299860238}{57547294261477755529724618616609187} a^{7} - \frac{388131418142801040584371625861091}{57547294261477755529724618616609187} a^{6} + \frac{214153127458269525401270737090689}{5231572205588886866338601692419017} a^{5} - \frac{46376136288317564446915593443286}{121664469897415973635781434707419} a^{4} - \frac{96002314580584013505568222486749}{5231572205588886866338601692419017} a^{3} - \frac{866026103516592949270999228479479}{5231572205588886866338601692419017} a^{2} - \frac{2344949403445780947099274422667827}{5231572205588886866338601692419017} a - \frac{1128569740170898480816821866727}{15341853975333979080171852470437}$, $\frac{1}{171359291134025051558527639532138215881360424094589002908985279235071083} a^{19} - \frac{6715000834457782279412881325392941}{171359291134025051558527639532138215881360424094589002908985279235071083} a^{18} + \frac{75831530981203829661078920153705147547078678463609178743938541389}{171359291134025051558527639532138215881360424094589002908985279235071083} a^{17} + \frac{103987604654323973233653231516209502214951599403412134849010697246}{171359291134025051558527639532138215881360424094589002908985279235071083} a^{16} + \frac{3708297903233422905084744680769304974242420014007409521608012601674}{15578117375820459232593421775648928716487311281326272991725934475915553} a^{15} + \frac{2477667298655673227329129082411071396554739276706685766483544233465}{15578117375820459232593421775648928716487311281326272991725934475915553} a^{14} - \frac{5560103171729291648263781214658663196281901723829533183815263342823}{15578117375820459232593421775648928716487311281326272991725934475915553} a^{13} - \frac{1570889351629952381124237540726699284914002468805354049599486508750}{15578117375820459232593421775648928716487311281326272991725934475915553} a^{12} - \frac{7993953623453615098329620237141432901135280089969995582602600455349}{15578117375820459232593421775648928716487311281326272991725934475915553} a^{11} + \frac{242917975292590107666618623535193780921661102017255679312833845379}{1416192488710950839326674706877175337862482843756933908338721315992323} a^{10} - \frac{3688534553350726041274017465629750137379283637143189407153461357047}{1416192488710950839326674706877175337862482843756933908338721315992323} a^{9} - \frac{6829374909594858025808120947083033938139702101398669968119948283145}{1416192488710950839326674706877175337862482843756933908338721315992323} a^{8} + \frac{408137473328790568908747515381357500943252316697688507235932404513}{34541280212462215593333529436028666777133727896510583130212715024203} a^{7} + \frac{28827549668614823292505597246351122225423696719105993200310134645233}{1416192488710950839326674706877175337862482843756933908338721315992323} a^{6} - \frac{1015420510826205656358353266234614561373562583913457858477297439483}{128744771700995530847879518807015939805680258523357628030792846908393} a^{5} - \frac{44148154139559679859314885438844763639255345108350562163695557483015}{128744771700995530847879518807015939805680258523357628030792846908393} a^{4} - \frac{355277370378494973130353806029530148312053774191149679064596976764}{3140116382951110508484866312366242434284884354228234830019337729473} a^{3} + \frac{3219755118529749843976097777212489344535123547226498204746209386553}{11704070154635957349807228982455994527789114411214329820981167900763} a^{2} - \frac{26346782052866362868474352777494235950847942589549730257882099597093}{128744771700995530847879518807015939805680258523357628030792846908393} a - \frac{6364749318364959518498077958342695888003179262424337709576758108}{377550650149547011284104160724386920251261755200462252289715093573}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}\times C_{2621610050}$, which has order $13108050250$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 62756100051.98372 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.0.247808.2, 5.5.5719140625.1, 10.10.1071794405000000000000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R $20$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{20}$ $20$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{20}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ $20$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
11Data not computed