Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 165 x^{17} + 375 x^{16} - 552 x^{15} + 445 x^{14} - 85 x^{13} - 35 x^{12} - 375 x^{11} + 879 x^{10} - 925 x^{9} + 585 x^{8} - 285 x^{7} + 175 x^{6} - 128 x^{5} + 65 x^{4} - 15 x^{3} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4656612873077392578125=5^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{72} a^{16} + \frac{1}{18} a^{15} + \frac{5}{72} a^{14} + \frac{1}{8} a^{13} + \frac{1}{72} a^{12} - \frac{31}{72} a^{11} + \frac{35}{72} a^{10} - \frac{5}{24} a^{9} - \frac{3}{8} a^{8} + \frac{19}{72} a^{7} - \frac{29}{72} a^{6} - \frac{25}{72} a^{5} + \frac{1}{8} a^{4} + \frac{25}{72} a^{3} - \frac{7}{24} a^{2} + \frac{7}{18} a - \frac{13}{72}$, $\frac{1}{72} a^{17} + \frac{1}{72} a^{15} + \frac{1}{72} a^{14} + \frac{1}{72} a^{13} + \frac{1}{72} a^{12} + \frac{1}{24} a^{11} + \frac{25}{72} a^{10} - \frac{1}{24} a^{9} + \frac{19}{72} a^{8} + \frac{1}{24} a^{7} + \frac{7}{72} a^{6} + \frac{1}{72} a^{5} - \frac{23}{72} a^{4} + \frac{35}{72} a^{3} + \frac{1}{18} a^{2} + \frac{7}{72} a + \frac{1}{18}$, $\frac{1}{2736} a^{18} - \frac{1}{304} a^{17} + \frac{1}{171} a^{16} + \frac{1}{36} a^{15} + \frac{127}{2736} a^{14} - \frac{197}{2736} a^{13} + \frac{21}{304} a^{12} - \frac{671}{2736} a^{11} + \frac{13}{304} a^{10} - \frac{431}{2736} a^{9} + \frac{61}{912} a^{8} - \frac{1139}{2736} a^{7} + \frac{1027}{2736} a^{6} + \frac{565}{2736} a^{5} - \frac{691}{2736} a^{4} + \frac{121}{684} a^{3} + \frac{67}{684} a^{2} + \frac{85}{2736} a - \frac{1}{912}$, $\frac{1}{1151856} a^{19} + \frac{67}{383952} a^{18} + \frac{1669}{287964} a^{17} + \frac{172}{71991} a^{16} + \frac{88477}{1151856} a^{15} - \frac{49565}{1151856} a^{14} - \frac{1371}{127984} a^{13} + \frac{174565}{1151856} a^{12} - \frac{20267}{127984} a^{11} + \frac{322477}{1151856} a^{10} - \frac{16813}{127984} a^{9} - \frac{427487}{1151856} a^{8} - \frac{231893}{1151856} a^{7} - \frac{507551}{1151856} a^{6} + \frac{505673}{1151856} a^{5} + \frac{1145}{143982} a^{4} + \frac{251765}{575928} a^{3} - \frac{71999}{1151856} a^{2} + \frac{24745}{127984} a + \frac{19085}{191976}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5033}{63992} a^{19} + \frac{379501}{383952} a^{18} - \frac{6457189}{1151856} a^{17} + \frac{11464165}{575928} a^{16} - \frac{27728233}{575928} a^{15} + \frac{28478797}{383952} a^{14} - \frac{62073337}{1151856} a^{13} - \frac{20410439}{1151856} a^{12} + \frac{50215045}{1151856} a^{11} + \frac{17602247}{383952} a^{10} - \frac{18254167}{127984} a^{9} + \frac{136233611}{1151856} a^{8} - \frac{33248743}{1151856} a^{7} - \frac{8896925}{1151856} a^{6} - \frac{1656601}{383952} a^{5} + \frac{9305843}{1151856} a^{4} + \frac{367489}{191976} a^{3} - \frac{853709}{143982} a^{2} + \frac{2037535}{1151856} a + \frac{52397}{383952} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1543.06769005 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.78125.1 x5, 10.2.30517578125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.78125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||