Normalized defining polynomial
\( x^{20} - 2 x^{19} + 86 x^{17} - 291 x^{16} - 5128 x^{15} - 8165 x^{14} - 24157 x^{13} + 471311 x^{12} - 327567 x^{11} + 4957725 x^{10} + 28845701 x^{9} + 138969016 x^{8} + 17023816 x^{7} + 265747180 x^{6} - 4273590944 x^{5} + 99672823022 x^{4} - 121309533205 x^{3} + 499850958234 x^{2} - 2285489898392 x + 6656093149231 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(463749150216643050841264365840725837=7^{15}\cdot 11^{9}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{16} - \frac{1}{2} a^{15} - \frac{1}{4} a^{14} - \frac{3}{8} a^{12} - \frac{3}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{19} + \frac{13835433758307302274245895161726390238693159552312307769361443494460257314100791198294959975012354353464306907638492283}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{18} - \frac{63308460358317455161514437712232479457209267738561073711920794818156328814104904861857990604078192305282320644110610665}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{17} + \frac{15968403973740770882163643470676076449352791432036523015629146901240564586286142027453914543008024758874295858503827825}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{16} + \frac{66761090015666570063060082548381398679701791469526321058984383663121549439832226768074608688941672031088624248666302633}{503793870076544810259885617124779887265231835030381145681806566270820619767710082510555417193506614138799371077096049912} a^{15} + \frac{87904228139846053845622372437928095026566332145177986530870558465978915759321652078459412475314396965938266135621806577}{503793870076544810259885617124779887265231835030381145681806566270820619767710082510555417193506614138799371077096049912} a^{14} + \frac{117722969117838280142513476039273784097595162453800233115288018025159997240542180163515559092908900202229029244537464661}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{13} - \frac{119129258041372600832576336759924031072935448884781008724181486743377055169250797700853592118196814403588787620194148071}{251896935038272405129942808562389943632615917515190572840903283135410309883855041255277708596753307069399685538548024956} a^{12} + \frac{265249738046972148770783715837931482522476620852694643363515903953715352932029881301294175993745332023848196872111273003}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{11} - \frac{23470873630386224190136315749876331933867849090054699455100532169527682715943157954495753007447975699971922164880559597}{125948467519136202564971404281194971816307958757595286420451641567705154941927520627638854298376653534699842769274012478} a^{10} - \frac{300808325191302218512452553590836805817824253229059645301239734012899333306512791868626094524083447713231392036380152667}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{9} - \frac{152726580969295780073096390894257207092050260865616516939618554795664418345446391698189899926559218111106175594159657989}{503793870076544810259885617124779887265231835030381145681806566270820619767710082510555417193506614138799371077096049912} a^{8} + \frac{36266175038583619926121090517394521641123063513756101206035539741482570341842746917567129353218479492012540384447600151}{503793870076544810259885617124779887265231835030381145681806566270820619767710082510555417193506614138799371077096049912} a^{7} + \frac{98227085272909201600704006734728771275402101166220459391729761551973567015878178561344927449576464147772367912776576603}{503793870076544810259885617124779887265231835030381145681806566270820619767710082510555417193506614138799371077096049912} a^{6} - \frac{174985716812371236082517912454396165663803271869336042228435964607454047944224936917924753931213252969916938045471973215}{503793870076544810259885617124779887265231835030381145681806566270820619767710082510555417193506614138799371077096049912} a^{5} + \frac{167533697920779366446785288424782828969878343845826054704794041105463886992308804534998860482923226129525414871880325137}{503793870076544810259885617124779887265231835030381145681806566270820619767710082510555417193506614138799371077096049912} a^{4} - \frac{13871241019971208690308971592684451114673016792249532490487022846550481574407251931080315122835460676358320735768521973}{62974233759568101282485702140597485908153979378797643210225820783852577470963760313819427149188326767349921384637006239} a^{3} + \frac{45909970491820810545041105542340997015952202892382950986561093717474893482102569278752653166509118732478537046440693747}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a^{2} - \frac{8170995680742503450482104756568131900362449556771296472597386950721573580861916990977707903531479836339890832784672263}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824} a - \frac{148085736734422047516594628008090938372175466515558409931186916184245126014285153252184459323057100311285523615125754467}{1007587740153089620519771234249559774530463670060762291363613132541641239535420165021110834387013228277598742154192099824}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.1995917.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $23$ | 23.10.5.1 | $x^{10} - 1058 x^{6} + 279841 x^{2} - 25745372$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 23.10.5.1 | $x^{10} - 1058 x^{6} + 279841 x^{2} - 25745372$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |