Normalized defining polynomial
\( x^{20} + 369 x^{18} + 49600 x^{16} + 3346810 x^{14} + 128674960 x^{12} + 2982904259 x^{10} + 42546340536 x^{8} + 370949598950 x^{6} + 1897966067335 x^{4} + 5130638907150 x^{2} + 5478679059725 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46327297853378526155737329440000000000000000=2^{20}\cdot 5^{16}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{30145} a^{16} + \frac{369}{30145} a^{14} - \frac{2138}{6029} a^{12} + \frac{143}{6029} a^{10} - \frac{2809}{6029} a^{8} - \frac{3781}{30145} a^{6} - \frac{11014}{30145} a^{4}$, $\frac{1}{30145} a^{17} + \frac{369}{30145} a^{15} - \frac{2138}{6029} a^{13} + \frac{143}{6029} a^{11} - \frac{2809}{6029} a^{9} - \frac{3781}{30145} a^{7} - \frac{11014}{30145} a^{5}$, $\frac{1}{361929236338300145778587750375786855244944790383105} a^{18} - \frac{1249184819031957354048852610326334911574369739}{361929236338300145778587750375786855244944790383105} a^{16} - \frac{175533424901800599637028564735836155068005969600547}{361929236338300145778587750375786855244944790383105} a^{14} + \frac{18547102373998022882630603469255711211176115336243}{72385847267660029155717550075157371048988958076621} a^{12} - \frac{10292802077533659348282047644025300509868486797901}{72385847267660029155717550075157371048988958076621} a^{10} + \frac{86732268527868862850208809553380726327677847526284}{361929236338300145778587750375786855244944790383105} a^{8} - \frac{13672699658822616820264585952193511089055247911036}{361929236338300145778587750375786855244944790383105} a^{6} + \frac{18438853129059889995396166220699808849113270108}{60031387682584200659908401123865791216610514245} a^{4} + \frac{2575492865406995585058119100644188967707903340}{12006277536516840131981680224773158243322102849} a^{2} + \frac{777138723091040106828185096708017868815788}{1991421054323576070987175356572094583400581}$, $\frac{1}{361929236338300145778587750375786855244944790383105} a^{19} - \frac{1249184819031957354048852610326334911574369739}{361929236338300145778587750375786855244944790383105} a^{17} - \frac{175533424901800599637028564735836155068005969600547}{361929236338300145778587750375786855244944790383105} a^{15} + \frac{18547102373998022882630603469255711211176115336243}{72385847267660029155717550075157371048988958076621} a^{13} - \frac{10292802077533659348282047644025300509868486797901}{72385847267660029155717550075157371048988958076621} a^{11} + \frac{86732268527868862850208809553380726327677847526284}{361929236338300145778587750375786855244944790383105} a^{9} - \frac{13672699658822616820264585952193511089055247911036}{361929236338300145778587750375786855244944790383105} a^{7} + \frac{18438853129059889995396166220699808849113270108}{60031387682584200659908401123865791216610514245} a^{5} + \frac{2575492865406995585058119100644188967707903340}{12006277536516840131981680224773158243322102849} a^{3} + \frac{777138723091040106828185096708017868815788}{1991421054323576070987175356572094583400581} a$
Class group and class number
$C_{2}\times C_{2}\times C_{24839302}$, which has order $99357208$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 341439.528105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 6029 | Data not computed | ||||||