Normalized defining polynomial
\( x^{20} - 8 x^{19} + 29 x^{18} - 74 x^{17} + 162 x^{16} - 211 x^{15} + 268 x^{14} - 248 x^{13} - 66 x^{12} + 38 x^{11} - 216 x^{10} + 477 x^{9} - 62 x^{8} + 166 x^{7} + 14 x^{6} - 123 x^{5} + 75 x^{4} - 54 x^{3} + 35 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4609814178311274644985033549=3^{10}\cdot 61^{7}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{544364391359875372262509} a^{19} + \frac{81521633813561959436245}{544364391359875372262509} a^{18} + \frac{78646525732615514573615}{544364391359875372262509} a^{17} + \frac{85250134461082951717455}{544364391359875372262509} a^{16} - \frac{225187415063332318425113}{544364391359875372262509} a^{15} + \frac{15923660631916102937155}{41874183950759644020193} a^{14} - \frac{261131489285514460060752}{544364391359875372262509} a^{13} - \frac{59453681595430607189890}{544364391359875372262509} a^{12} + \frac{116210929573842724690345}{544364391359875372262509} a^{11} - \frac{184916868654636457030021}{544364391359875372262509} a^{10} - \frac{251638494485469311419859}{544364391359875372262509} a^{9} + \frac{22927920005323292330740}{544364391359875372262509} a^{8} + \frac{29627206397249711435294}{544364391359875372262509} a^{7} + \frac{67421331342344256232435}{544364391359875372262509} a^{6} - \frac{47285986960020336015061}{544364391359875372262509} a^{5} - \frac{143751247034046120471950}{544364391359875372262509} a^{4} + \frac{13401104351022184108501}{41874183950759644020193} a^{3} + \frac{80494551292274121377789}{544364391359875372262509} a^{2} + \frac{160105350835215309705795}{544364391359875372262509} a + \frac{29143534409606058771502}{544364391359875372262509}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{14730284694584}{323387475417031} a^{19} + \frac{112421076038934}{323387475417031} a^{18} - \frac{399961828702114}{323387475417031} a^{17} + \frac{1072219316949963}{323387475417031} a^{16} - \frac{2522015813003376}{323387475417031} a^{15} + \frac{3610773478163458}{323387475417031} a^{14} - \frac{5753995167439339}{323387475417031} a^{13} + \frac{6159160950924071}{323387475417031} a^{12} - \frac{1763619871935758}{323387475417031} a^{11} + \frac{3223862078233971}{323387475417031} a^{10} + \frac{5375148533488920}{323387475417031} a^{9} - \frac{10608433072122575}{323387475417031} a^{8} + \frac{1410871577934436}{323387475417031} a^{7} - \frac{9817338600889712}{323387475417031} a^{6} + \frac{2003612791308047}{323387475417031} a^{5} + \frac{4100260810048387}{323387475417031} a^{4} - \frac{1250797725403599}{323387475417031} a^{3} + \frac{2679639770228372}{323387475417031} a^{2} - \frac{1889372947102143}{323387475417031} a + \frac{347686673457693}{323387475417031} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 756145.319367 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 960 |
| The 35 conjugacy class representatives for t20n174 |
| Character table for t20n174 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.549.1, 5.5.24217.1, 10.0.142510530627.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||