Normalized defining polynomial
\( x^{20} + 41 x^{18} + 656 x^{16} + 5289 x^{14} + 23165 x^{12} + 55801 x^{10} + 71545 x^{8} + 45141 x^{6} + 13120 x^{4} + 1517 x^{2} + 41 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4607795443446634940843146923591335936=2^{20}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(164=2^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{164}(1,·)$, $\chi_{164}(131,·)$, $\chi_{164}(133,·)$, $\chi_{164}(81,·)$, $\chi_{164}(141,·)$, $\chi_{164}(143,·)$, $\chi_{164}(43,·)$, $\chi_{164}(87,·)$, $\chi_{164}(25,·)$, $\chi_{164}(91,·)$, $\chi_{164}(159,·)$, $\chi_{164}(155,·)$, $\chi_{164}(37,·)$, $\chi_{164}(39,·)$, $\chi_{164}(105,·)$, $\chi_{164}(103,·)$, $\chi_{164}(45,·)$, $\chi_{164}(113,·)$, $\chi_{164}(115,·)$, $\chi_{164}(57,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{7}$, $\frac{1}{657} a^{16} + \frac{2}{73} a^{14} + \frac{35}{219} a^{12} - \frac{10}{219} a^{10} + \frac{53}{657} a^{8} - \frac{34}{219} a^{4} - \frac{85}{219} a^{2} - \frac{110}{657}$, $\frac{1}{657} a^{17} + \frac{2}{73} a^{15} + \frac{35}{219} a^{13} - \frac{10}{219} a^{11} + \frac{53}{657} a^{9} - \frac{34}{219} a^{5} - \frac{85}{219} a^{3} - \frac{110}{657} a$, $\frac{1}{3858449967} a^{18} + \frac{1762651}{3858449967} a^{16} + \frac{93209570}{1286149989} a^{14} - \frac{9177052}{428716663} a^{12} - \frac{3830878}{52855479} a^{10} + \frac{338193440}{3858449967} a^{8} - \frac{562305310}{1286149989} a^{6} + \frac{75059731}{428716663} a^{4} - \frac{1443614141}{3858449967} a^{2} + \frac{653515540}{3858449967}$, $\frac{1}{3858449967} a^{19} + \frac{1762651}{3858449967} a^{17} + \frac{93209570}{1286149989} a^{15} - \frac{9177052}{428716663} a^{13} - \frac{3830878}{52855479} a^{11} + \frac{338193440}{3858449967} a^{9} - \frac{562305310}{1286149989} a^{7} + \frac{75059731}{428716663} a^{5} - \frac{1443614141}{3858449967} a^{3} + \frac{653515540}{3858449967} a$
Class group and class number
$C_{2}\times C_{482}$, which has order $964$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.63655 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.1102736.1, 5.5.2825761.1, 10.10.327381934393961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 41 | Data not computed | ||||||