Normalized defining polynomial
\( x^{20} - 4 x^{18} + 9 x^{16} - 6 x^{14} - 16 x^{12} + 64 x^{10} - 64 x^{8} - 96 x^{6} + 576 x^{4} - 1024 x^{2} + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4558245923829641289021197123584=2^{18}\cdot 1429^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1429$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{6}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{7}$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{8} - \frac{1}{8} a^{6}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{14} + \frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{15} - \frac{1}{64} a^{14} + \frac{1}{64} a^{13} - \frac{1}{32} a^{12} + \frac{5}{128} a^{11} + \frac{3}{64} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{512} a^{16} - \frac{1}{256} a^{14} - \frac{1}{32} a^{13} + \frac{13}{512} a^{12} + \frac{1}{128} a^{10} - \frac{1}{32} a^{9} + \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{5}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{1024} a^{17} - \frac{1}{512} a^{15} - \frac{1}{64} a^{14} + \frac{13}{1024} a^{13} + \frac{1}{256} a^{11} + \frac{3}{64} a^{10} - \frac{1}{32} a^{9} - \frac{3}{32} a^{8} - \frac{3}{32} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{5}{32} a^{3} + \frac{1}{4} a^{2} - \frac{1}{8} a$, $\frac{1}{1024} a^{18} + \frac{9}{1024} a^{14} + \frac{15}{512} a^{12} - \frac{3}{128} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} + \frac{5}{32} a^{4} - \frac{5}{16} a^{2} - \frac{1}{4}$, $\frac{1}{4096} a^{19} - \frac{1}{2048} a^{18} + \frac{9}{4096} a^{15} - \frac{9}{2048} a^{14} + \frac{15}{2048} a^{13} - \frac{15}{1024} a^{12} + \frac{13}{512} a^{11} - \frac{13}{256} a^{10} - \frac{1}{128} a^{9} - \frac{7}{64} a^{8} + \frac{5}{64} a^{7} - \frac{1}{32} a^{6} - \frac{27}{128} a^{5} - \frac{5}{64} a^{4} - \frac{13}{64} a^{3} - \frac{3}{32} a^{2} - \frac{1}{16} a + \frac{1}{8}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5690597.15793 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T85):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.2042041.1, 10.0.33359451565448.1, 10.0.2135004900188672.2, 10.10.266875612523584.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 1429 | Data not computed | ||||||