Normalized defining polynomial
\( x^{20} - 4 x^{18} + 10 x^{16} - 42 x^{14} + 181 x^{12} - 580 x^{10} + 1629 x^{8} - 3402 x^{6} + 7290 x^{4} - 26244 x^{2} + 59049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4558245923829641289021197123584=2^{18}\cdot 1429^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1429$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{8} a^{8} - \frac{1}{12} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{11}{24} a^{3} - \frac{3}{8} a^{2} + \frac{1}{12} a - \frac{3}{8}$, $\frac{1}{72} a^{12} - \frac{1}{18} a^{10} - \frac{1}{9} a^{8} + \frac{1}{6} a^{6} - \frac{1}{9} a^{4} + \frac{4}{9} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{216} a^{13} - \frac{1}{54} a^{11} + \frac{5}{108} a^{9} + \frac{1}{18} a^{7} - \frac{1}{4} a^{6} - \frac{1}{27} a^{5} - \frac{47}{108} a^{3} - \frac{1}{2} a^{2} - \frac{5}{24} a - \frac{1}{4}$, $\frac{1}{1296} a^{14} + \frac{5}{1296} a^{12} - \frac{13}{648} a^{10} - \frac{1}{8} a^{9} - \frac{19}{216} a^{8} - \frac{1}{8} a^{7} + \frac{13}{81} a^{6} - \frac{83}{648} a^{4} + \frac{1}{8} a^{3} - \frac{13}{48} a^{2} + \frac{1}{8} a - \frac{5}{16}$, $\frac{1}{7776} a^{15} - \frac{1}{2592} a^{14} - \frac{13}{7776} a^{13} + \frac{13}{2592} a^{12} - \frac{29}{1944} a^{11} + \frac{29}{648} a^{10} + \frac{5}{1296} a^{9} - \frac{5}{432} a^{8} + \frac{77}{3888} a^{7} - \frac{77}{1296} a^{6} - \frac{127}{1944} a^{5} + \frac{127}{648} a^{4} + \frac{41}{864} a^{3} + \frac{103}{288} a^{2} - \frac{29}{96} a + \frac{13}{32}$, $\frac{1}{93312} a^{16} + \frac{7}{46656} a^{14} + \frac{181}{93312} a^{12} + \frac{347}{15552} a^{10} - \frac{83}{23328} a^{8} + \frac{5713}{46656} a^{6} - \frac{2491}{10368} a^{4} - \frac{1}{2} a^{3} - \frac{17}{576} a^{2} - \frac{63}{128}$, $\frac{1}{559872} a^{17} - \frac{1}{186624} a^{16} + \frac{7}{279936} a^{15} - \frac{7}{93312} a^{14} - \frac{1115}{559872} a^{13} + \frac{1115}{186624} a^{12} + \frac{1211}{93312} a^{11} - \frac{1211}{31104} a^{10} - \frac{14987}{139968} a^{9} + \frac{3323}{46656} a^{8} + \frac{9601}{279936} a^{7} + \frac{13727}{93312} a^{6} + \frac{3845}{62208} a^{5} - \frac{3845}{20736} a^{4} - \frac{331}{1152} a^{3} + \frac{43}{384} a^{2} - \frac{79}{768} a + \frac{15}{256}$, $\frac{1}{3359232} a^{18} + \frac{5}{3359232} a^{16} - \frac{1241}{3359232} a^{14} + \frac{5767}{1119744} a^{12} + \frac{77297}{1679616} a^{10} - \frac{569}{1679616} a^{8} + \frac{5249}{124416} a^{6} + \frac{4537}{41472} a^{4} + \frac{371}{4608} a^{2} - \frac{1}{2} a + \frac{207}{512}$, $\frac{1}{20155392} a^{19} - \frac{1}{6718464} a^{18} + \frac{5}{20155392} a^{17} - \frac{5}{6718464} a^{16} - \frac{1241}{20155392} a^{15} + \frac{1241}{6718464} a^{14} - \frac{9785}{6718464} a^{13} + \frac{9785}{2239488} a^{12} + \frac{170609}{10077696} a^{11} - \frac{170609}{3359232} a^{10} - \frac{233849}{10077696} a^{9} - \frac{186055}{3359232} a^{8} + \frac{77825}{746496} a^{7} + \frac{15487}{248832} a^{6} + \frac{50617}{248832} a^{5} - \frac{9145}{82944} a^{4} + \frac{2897}{9216} a^{3} + \frac{559}{3072} a^{2} + \frac{655}{3072} a + \frac{497}{1024}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14385341.0336 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T85):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.2042041.1, 10.0.2135004900188672.1, 10.0.33359451565448.1, 10.10.266875612523584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 1429 | Data not computed | ||||||