Normalized defining polynomial
\( x^{20} + 68 x^{18} + 1901 x^{16} + 16260 x^{14} - 5464 x^{12} - 1497772 x^{10} - 8987849 x^{8} + 18355260 x^{6} + 322730031 x^{4} + 1004707748 x^{2} + 1093691041 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45386099695641231028031241010795100749430784=2^{40}\cdot 3^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(744=2^{3}\cdot 3\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{744}(1,·)$, $\chi_{744}(395,·)$, $\chi_{744}(97,·)$, $\chi_{744}(587,·)$, $\chi_{744}(529,·)$, $\chi_{744}(275,·)$, $\chi_{744}(469,·)$, $\chi_{744}(23,·)$, $\chi_{744}(721,·)$, $\chi_{744}(349,·)$, $\chi_{744}(481,·)$, $\chi_{744}(743,·)$, $\chi_{744}(263,·)$, $\chi_{744}(647,·)$, $\chi_{744}(109,·)$, $\chi_{744}(157,·)$, $\chi_{744}(371,·)$, $\chi_{744}(373,·)$, $\chi_{744}(635,·)$, $\chi_{744}(215,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{257490917289984707318478225711163803611045} a^{18} - \frac{106070565782162678431564357429668179580741}{257490917289984707318478225711163803611045} a^{16} - \frac{6859641892539751011583001075136914716936}{51498183457996941463695645142232760722209} a^{14} + \frac{17406985277632054714254372806570493234608}{51498183457996941463695645142232760722209} a^{12} + \frac{60934569619990468366275525578860093922946}{257490917289984707318478225711163803611045} a^{10} + \frac{51892750652113618956854391875105977073964}{257490917289984707318478225711163803611045} a^{8} - \frac{14304793053448711761656046370785790764407}{51498183457996941463695645142232760722209} a^{6} + \frac{8039332614883640202117146746413216412530}{51498183457996941463695645142232760722209} a^{4} - \frac{28204338199371408191130291694010931974799}{257490917289984707318478225711163803611045} a^{2} + \frac{54793624902464721527919562957649857264324}{257490917289984707318478225711163803611045}$, $\frac{1}{8515482125697084255729393402493898149220869195} a^{19} - \frac{407714192635827954363582595658201969295864976}{8515482125697084255729393402493898149220869195} a^{17} + \frac{266496239753241632323613380609979399822714639}{1703096425139416851145878680498779629844173839} a^{15} - \frac{831884248595204960349825197254821446213329578}{1703096425139416851145878680498779629844173839} a^{13} - \frac{646241267828241624901014071009442286969800004}{8515482125697084255729393402493898149220869195} a^{11} + \frac{51292585291359070375334021308396702895671919}{8515482125697084255729393402493898149220869195} a^{9} - \frac{764916823694682020272033073343953980797734684}{1703096425139416851145878680498779629844173839} a^{7} + \frac{247096323564084208783013822539179199161571312}{1703096425139416851145878680498779629844173839} a^{5} + \frac{2940260580196136001461511729104085462502548056}{8515482125697084255729393402493898149220869195} a^{3} + \frac{889428421944509643799551711169317427529813754}{8515482125697084255729393402493898149220869195} a$
Class group and class number
$C_{2}\times C_{2}\times C_{273306}$, which has order $1093224$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24785765.76033278 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-93}) \), \(\Q(\sqrt{-186}) \), \(\Q(\sqrt{2}, \sqrt{-93})\), 5.5.923521.1, 10.10.27947533514866688.1, 10.0.6579024061484086272.1, 10.0.210528769967490760704.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $31$ | 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |