Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} + 4 x^{17} + 8 x^{16} - 4 x^{15} + 160 x^{14} + 40 x^{13} + 516 x^{12} + 240 x^{11} + 880 x^{10} + 724 x^{9} + 6303 x^{8} - 1204 x^{7} + 4088 x^{6} + 8024 x^{5} + 4756 x^{4} - 3120 x^{3} + 6160 x^{2} - 1600 x + 400 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4517347060908032000000000000000=2^{30}\cdot 5^{15}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{20} a^{14} + \frac{3}{20} a^{13} - \frac{1}{4} a^{11} + \frac{1}{20} a^{10} + \frac{1}{20} a^{8} - \frac{1}{4} a^{7} - \frac{1}{5} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{20} a^{15} + \frac{1}{20} a^{13} - \frac{1}{4} a^{12} - \frac{1}{5} a^{11} - \frac{3}{20} a^{10} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{20} a^{7} + \frac{7}{20} a^{6} - \frac{3}{20} a^{4} + \frac{1}{10} a^{2}$, $\frac{1}{120} a^{16} + \frac{1}{60} a^{15} + \frac{1}{5} a^{13} + \frac{1}{20} a^{12} - \frac{13}{60} a^{11} + \frac{1}{30} a^{10} + \frac{7}{60} a^{9} - \frac{13}{60} a^{8} - \frac{3}{10} a^{7} - \frac{7}{20} a^{6} - \frac{3}{20} a^{5} + \frac{19}{120} a^{4} + \frac{1}{6} a^{3} + \frac{3}{20} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{120} a^{17} + \frac{1}{60} a^{15} + \frac{1}{10} a^{13} - \frac{1}{15} a^{12} - \frac{7}{30} a^{11} + \frac{1}{5} a^{10} + \frac{1}{10} a^{9} + \frac{1}{30} a^{8} + \frac{3}{10} a^{7} + \frac{1}{5} a^{6} - \frac{1}{24} a^{5} + \frac{1}{5} a^{4} - \frac{1}{12} a^{3} - \frac{1}{15} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{1200} a^{18} + \frac{1}{600} a^{17} - \frac{1}{300} a^{16} - \frac{1}{150} a^{15} - \frac{1}{50} a^{14} - \frac{37}{150} a^{13} + \frac{7}{30} a^{12} - \frac{29}{300} a^{11} + \frac{1}{5} a^{10} + \frac{4}{75} a^{9} + \frac{11}{300} a^{8} - \frac{1}{25} a^{7} - \frac{401}{1200} a^{6} - \frac{59}{600} a^{5} + \frac{14}{75} a^{4} + \frac{7}{60} a^{3} + \frac{11}{30} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{86035151345091428158233141349200} a^{19} + \frac{98596396825135353258824553}{7169595945424285679852761779100} a^{18} - \frac{54020306545657945797705337729}{21508787836272857039558285337300} a^{17} + \frac{80965711322210253900750771259}{21508787836272857039558285337300} a^{16} - \frac{183353958038539911668126680097}{10754393918136428519779142668650} a^{15} - \frac{157399974222374570254603480729}{10754393918136428519779142668650} a^{14} - \frac{520610866286216897653105554079}{5377196959068214259889571334325} a^{13} - \frac{1207096454116070460661848404273}{7169595945424285679852761779100} a^{12} - \frac{2112403584325994661010724195203}{10754393918136428519779142668650} a^{11} + \frac{1385734528505397499945415010943}{10754393918136428519779142668650} a^{10} + \frac{69933795852622999729215823883}{860351513450914281582331413492} a^{9} - \frac{1009952359096389969119079630077}{5377196959068214259889571334325} a^{8} - \frac{37577205456249847803213050184473}{86035151345091428158233141349200} a^{7} - \frac{1160826565129078224809923128663}{3584797972712142839926380889550} a^{6} + \frac{668230910332652711041277728009}{10754393918136428519779142668650} a^{5} - \frac{2630810762214084865838724363713}{10754393918136428519779142668650} a^{4} - \frac{393433880889895950523868677208}{1075439391813642851977914266865} a^{3} + \frac{204470189170946112325890948127}{1075439391813642851977914266865} a^{2} + \frac{150902316574213000978731585431}{430175756725457140791165706746} a + \frac{101176899732756210582031220330}{215087878362728570395582853373}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14979999.4048 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1352000.1, 5.1.1352000.1 x5, 10.2.9139520000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1352000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |