Normalized defining polynomial
\( x^{20} - 6 x^{19} + 15 x^{18} - 74 x^{17} + 759 x^{16} - 1908 x^{15} + 13376 x^{14} - 30574 x^{13} + 248508 x^{12} - 273646 x^{11} + 3542958 x^{10} - 2250240 x^{9} + 41176558 x^{8} - 7608160 x^{7} + 370498441 x^{6} + 50123358 x^{5} + 2326214329 x^{4} + 778579040 x^{3} + 9119322015 x^{2} + 2884250250 x + 15639805975 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(450401223741795652272735907416637440000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 31^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(1349,·)$, $\chi_{3720}(481,·)$, $\chi_{3720}(841,·)$, $\chi_{3720}(3101,·)$, $\chi_{3720}(3629,·)$, $\chi_{3720}(529,·)$, $\chi_{3720}(2329,·)$, $\chi_{3720}(721,·)$, $\chi_{3720}(2141,·)$, $\chi_{3720}(101,·)$, $\chi_{3720}(2209,·)$, $\chi_{3720}(869,·)$, $\chi_{3720}(1489,·)$, $\chi_{3720}(1709,·)$, $\chi_{3720}(221,·)$, $\chi_{3720}(1969,·)$, $\chi_{3720}(1589,·)$, $\chi_{3720}(2761,·)$, $\chi_{3720}(3581,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{9} + \frac{1}{5} a^{5}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{13} + \frac{1}{25} a^{12} - \frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{3}{25} a^{9} + \frac{3}{25} a^{8} - \frac{3}{25} a^{7} + \frac{6}{25} a^{6} + \frac{4}{25} a^{5} + \frac{1}{25} a^{4} - \frac{1}{25} a^{3} - \frac{1}{5} a$, $\frac{1}{725} a^{15} + \frac{2}{145} a^{14} - \frac{12}{145} a^{13} - \frac{2}{145} a^{12} + \frac{27}{725} a^{11} + \frac{6}{145} a^{10} - \frac{11}{145} a^{9} - \frac{66}{145} a^{8} - \frac{82}{725} a^{7} - \frac{48}{145} a^{6} - \frac{61}{145} a^{5} + \frac{18}{145} a^{4} - \frac{96}{725} a^{3} - \frac{1}{29} a^{2} + \frac{24}{145} a - \frac{11}{29}$, $\frac{1}{725} a^{16} + \frac{14}{725} a^{14} - \frac{19}{725} a^{13} + \frac{11}{725} a^{12} + \frac{21}{725} a^{11} + \frac{22}{725} a^{10} - \frac{157}{725} a^{9} - \frac{6}{145} a^{8} - \frac{3}{25} a^{7} + \frac{239}{725} a^{6} - \frac{224}{725} a^{5} + \frac{338}{725} a^{4} - \frac{254}{725} a^{3} - \frac{71}{145} a^{2} - \frac{34}{145} a - \frac{6}{29}$, $\frac{1}{725} a^{17} - \frac{14}{725} a^{14} - \frac{19}{725} a^{13} + \frac{16}{725} a^{12} - \frac{66}{725} a^{11} + \frac{3}{725} a^{10} + \frac{61}{145} a^{9} - \frac{252}{725} a^{8} + \frac{82}{725} a^{7} + \frac{91}{725} a^{6} + \frac{113}{725} a^{5} - \frac{209}{725} a^{4} - \frac{171}{725} a^{3} + \frac{13}{29} a^{2} + \frac{69}{145} a + \frac{9}{29}$, $\frac{1}{68476656943076129786875} a^{18} - \frac{13947851332807082127}{68476656943076129786875} a^{17} - \frac{14009959155060119852}{68476656943076129786875} a^{16} + \frac{45478096686779136086}{68476656943076129786875} a^{15} + \frac{1250359231537372271121}{68476656943076129786875} a^{14} + \frac{6203014814946687557452}{68476656943076129786875} a^{13} + \frac{339105527075250762354}{13695331388615225957375} a^{12} - \frac{5989087214351244263587}{68476656943076129786875} a^{11} + \frac{1157870110253502982611}{13695331388615225957375} a^{10} - \frac{1226344821600829186468}{68476656943076129786875} a^{9} + \frac{20322983390348456276541}{68476656943076129786875} a^{8} - \frac{8467296228779796147214}{68476656943076129786875} a^{7} + \frac{6784093535665372534133}{68476656943076129786875} a^{6} - \frac{24184579676485011986002}{68476656943076129786875} a^{5} + \frac{19817027062168044666961}{68476656943076129786875} a^{4} - \frac{2057230288115167417216}{13695331388615225957375} a^{3} + \frac{5447861813971434462227}{13695331388615225957375} a^{2} + \frac{461034192506754475446}{2739066277723045191475} a + \frac{5389907267305791574}{94450561300794661775}$, $\frac{1}{3419624771582171595970592373348326706457616350406875} a^{19} + \frac{4113750550169167700043419581}{683924954316434319194118474669665341291523270081375} a^{18} + \frac{830293396411217040540688256759233485693696002334}{3419624771582171595970592373348326706457616350406875} a^{17} - \frac{1743047660536625196421457429636506820599407989678}{3419624771582171595970592373348326706457616350406875} a^{16} - \frac{762522543380731982431654328783596329565507461052}{3419624771582171595970592373348326706457616350406875} a^{15} + \frac{32509972374365684895039708769868328304010814304}{18892954539128019867240841841703462466616664919375} a^{14} + \frac{98898346966251211705359543895055090599378518504534}{3419624771582171595970592373348326706457616350406875} a^{13} + \frac{225534863475819131018825539291131569751931480892253}{3419624771582171595970592373348326706457616350406875} a^{12} - \frac{331677347014739226690211964723328203230968700361029}{3419624771582171595970592373348326706457616350406875} a^{11} + \frac{240745337013793201098666288378871072142514559206642}{3419624771582171595970592373348326706457616350406875} a^{10} + \frac{2497495727883465291222429136343422101147721602968}{683924954316434319194118474669665341291523270081375} a^{9} + \frac{867648383537238363552348512215267546804838153167448}{3419624771582171595970592373348326706457616350406875} a^{8} - \frac{235739001522759032006138166771596211004577620250168}{683924954316434319194118474669665341291523270081375} a^{7} + \frac{1362479925057887610409242637130607431168372154150704}{3419624771582171595970592373348326706457616350406875} a^{6} - \frac{1307269111616200562783242120427240824086523155357053}{3419624771582171595970592373348326706457616350406875} a^{5} + \frac{280004288977795601916299617849775216603663579119247}{3419624771582171595970592373348326706457616350406875} a^{4} + \frac{48153299239887570457894613720078384051787949761587}{136784990863286863838823694933933068258304654016275} a^{3} - \frac{127162461281291536613053724314346427297827349458406}{683924954316434319194118474669665341291523270081375} a^{2} - \frac{44767636607395435082777289874068768653476412106287}{136784990863286863838823694933933068258304654016275} a + \frac{35252017563771714422193785355380815529098747598147}{136784990863286863838823694933933068258304654016275}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{264620}$, which has order $21169600$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24173706.832424585 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{5}, \sqrt{-6})\), 5.5.923521.1, 10.10.2665284492003125.1, 10.0.6791250644112605184.1, 10.0.21222658262851891200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $31$ | 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |