Normalized defining polynomial
\( x^{20} + 10 x^{18} - 5 x^{17} + 15 x^{16} - 46 x^{15} - 60 x^{14} - 100 x^{13} - 30 x^{12} + 290 x^{11} + 356 x^{10} + 470 x^{9} + 335 x^{8} - 2190 x^{7} + 490 x^{6} - 2261 x^{5} + 3950 x^{4} - 1800 x^{3} + 1630 x^{2} - 1305 x + 311 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4503750781250000000000000000=2^{16}\cdot 5^{23}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{41} a^{17} + \frac{1}{41} a^{16} - \frac{8}{41} a^{15} + \frac{10}{41} a^{14} + \frac{14}{41} a^{13} + \frac{16}{41} a^{12} - \frac{13}{41} a^{11} + \frac{7}{41} a^{10} - \frac{6}{41} a^{9} + \frac{15}{41} a^{8} + \frac{15}{41} a^{6} - \frac{4}{41} a^{5} - \frac{19}{41} a^{4} - \frac{12}{41} a^{3} + \frac{11}{41} a^{2} - \frac{12}{41} a + \frac{17}{41}$, $\frac{1}{200882821} a^{18} + \frac{23394}{200882821} a^{17} - \frac{29371934}{200882821} a^{16} - \frac{68230980}{200882821} a^{15} + \frac{26531959}{200882821} a^{14} + \frac{29308983}{200882821} a^{13} - \frac{2679939}{6480091} a^{12} + \frac{17711380}{200882821} a^{11} + \frac{24907409}{200882821} a^{10} + \frac{894692}{4899581} a^{9} - \frac{23504053}{200882821} a^{8} + \frac{1853748}{200882821} a^{7} - \frac{579032}{6480091} a^{6} - \frac{57058827}{200882821} a^{5} - \frac{20156623}{200882821} a^{4} - \frac{76927745}{200882821} a^{3} + \frac{29208682}{200882821} a^{2} - \frac{5415088}{200882821} a - \frac{7372762}{200882821}$, $\frac{1}{265211441365411257188741} a^{19} + \frac{293389427547118}{265211441365411257188741} a^{18} - \frac{2071913203688286125800}{265211441365411257188741} a^{17} - \frac{2627423194445934871633}{265211441365411257188741} a^{16} - \frac{109055450576072439636547}{265211441365411257188741} a^{15} - \frac{17153702307236836390548}{265211441365411257188741} a^{14} + \frac{59516845134449300158915}{265211441365411257188741} a^{13} + \frac{91238792102745078812798}{265211441365411257188741} a^{12} + \frac{70998739796281297729794}{265211441365411257188741} a^{11} - \frac{19776578619456094043337}{265211441365411257188741} a^{10} - \frac{70121041211402415246332}{265211441365411257188741} a^{9} - \frac{37467176382982158351025}{265211441365411257188741} a^{8} - \frac{91853445711339048620010}{265211441365411257188741} a^{7} + \frac{1443924939450411641850}{6468571740619786760701} a^{6} - \frac{96934559735992227482218}{265211441365411257188741} a^{5} + \frac{70896964647446206333219}{265211441365411257188741} a^{4} - \frac{68834216518026778772324}{265211441365411257188741} a^{3} + \frac{89294445071102298366309}{265211441365411257188741} a^{2} + \frac{44370924722007255008401}{265211441365411257188741} a + \frac{112286064950297335046282}{265211441365411257188741}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3233097247159695276582}{265211441365411257188741} a^{19} - \frac{2304872176461308450505}{265211441365411257188741} a^{18} - \frac{34060215020755136023242}{265211441365411257188741} a^{17} - \frac{8563414051689290252386}{265211441365411257188741} a^{16} - \frac{56126025910608477111698}{265211441365411257188741} a^{15} + \frac{104088837467796157961754}{265211441365411257188741} a^{14} + \frac{261661011523644777129362}{265211441365411257188741} a^{13} + \frac{503484675895797895073545}{265211441365411257188741} a^{12} + \frac{14995990564484536983060}{8555207785981008296411} a^{11} - \frac{557006576645865517102498}{265211441365411257188741} a^{10} - \frac{1454350666734973446778788}{265211441365411257188741} a^{9} - \frac{2450204533436723636962949}{265211441365411257188741} a^{8} - \frac{2828585173379288585840286}{265211441365411257188741} a^{7} + \frac{4861303386658572703499395}{265211441365411257188741} a^{6} + \frac{1476702935198979081116938}{265211441365411257188741} a^{5} + \frac{7852841578706656396278201}{265211441365411257188741} a^{4} - \frac{7106395083703816379212406}{265211441365411257188741} a^{3} + \frac{1163577161281567567034627}{265211441365411257188741} a^{2} - \frac{3924035768438624331209896}{265211441365411257188741} a + \frac{1743746937050292597133587}{265211441365411257188741} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1633832.53547 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.2450000.1, 10.10.30012500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |