Normalized defining polynomial
\( x^{20} - 3 x^{19} + 32 x^{18} - 69 x^{17} + 423 x^{16} - 710 x^{15} + 3340 x^{14} - 4419 x^{13} + 20397 x^{12} - 19773 x^{11} + 101911 x^{10} - 78690 x^{9} + 410478 x^{8} - 275664 x^{7} + 1342246 x^{6} - 738184 x^{5} + 3056061 x^{4} - 1278310 x^{3} + 4404481 x^{2} - 869298 x + 2624639 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45014308264858198791680908203125=5^{14}\cdot 269^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 269$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{23178771106883275563146144325377706799522619628640342652931551} a^{19} + \frac{9111916009151806518346155868579140786774770125629597886518884}{23178771106883275563146144325377706799522619628640342652931551} a^{18} - \frac{5167832901566740696830857696787330039356524984574024738432070}{23178771106883275563146144325377706799522619628640342652931551} a^{17} + \frac{7710529545295447282792734074903904984342125645385028150959425}{23178771106883275563146144325377706799522619628640342652931551} a^{16} + \frac{3081470168892588638366478655120386048923333421992720938058408}{23178771106883275563146144325377706799522619628640342652931551} a^{15} - \frac{9690363696099754963533018419610750305447370481930517867066383}{23178771106883275563146144325377706799522619628640342652931551} a^{14} - \frac{7423001380651316902378355297954619666544308273079811137851661}{23178771106883275563146144325377706799522619628640342652931551} a^{13} + \frac{3648344278273990111204971877149713160900253699182522691291966}{23178771106883275563146144325377706799522619628640342652931551} a^{12} - \frac{692925477149768134262120434670080299943399415320531164006067}{23178771106883275563146144325377706799522619628640342652931551} a^{11} - \frac{10333400923367084359183744426953101552438664690068929248620215}{23178771106883275563146144325377706799522619628640342652931551} a^{10} - \frac{5320564735760444555458713001111248013327032583207307201554928}{23178771106883275563146144325377706799522619628640342652931551} a^{9} - \frac{2329537414428836777918272370043069717991141494840867323359548}{23178771106883275563146144325377706799522619628640342652931551} a^{8} - \frac{10084067043325145647080513605519758042677498383544967222617443}{23178771106883275563146144325377706799522619628640342652931551} a^{7} - \frac{5109442305291520885946223331420366005029997429568670730006054}{23178771106883275563146144325377706799522619628640342652931551} a^{6} + \frac{7284411586081279768637957042438711791029729204773081592701522}{23178771106883275563146144325377706799522619628640342652931551} a^{5} - \frac{5425616353738550478511324993256668877042412872907802154400924}{23178771106883275563146144325377706799522619628640342652931551} a^{4} - \frac{6703137393049801345398573369316342095974339201614315923486228}{23178771106883275563146144325377706799522619628640342652931551} a^{3} + \frac{1810308693814705940707741603520589379710522267391716080630524}{23178771106883275563146144325377706799522619628640342652931551} a^{2} - \frac{126362316315425152262645466260523470650245114846572147655694}{23178771106883275563146144325377706799522619628640342652931551} a - \frac{4411236275579320621820174728715871673269313791698512543353235}{23178771106883275563146144325377706799522619628640342652931551}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13225817.0369 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.33625.1, 10.2.5653203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 269 | Data not computed | ||||||