Properties

Label 20.0.44998002377...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{10}\cdot 41^{19}$
Root discriminant $152.29$
Ramified primes $2, 5, 41$
Class number $6748832$ (GRH)
Class group $[2, 2, 2, 843604]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![400390625, 0, 2962890625, 0, 5125000000, 0, 3526640625, 0, 1117890625, 0, 174378125, 0, 14478125, 0, 661125, 0, 16400, 0, 205, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 205*x^18 + 16400*x^16 + 661125*x^14 + 14478125*x^12 + 174378125*x^10 + 1117890625*x^8 + 3526640625*x^6 + 5125000000*x^4 + 2962890625*x^2 + 400390625)
 
gp: K = bnfinit(x^20 + 205*x^18 + 16400*x^16 + 661125*x^14 + 14478125*x^12 + 174378125*x^10 + 1117890625*x^8 + 3526640625*x^6 + 5125000000*x^4 + 2962890625*x^2 + 400390625, 1)
 

Normalized defining polynomial

\( x^{20} + 205 x^{18} + 16400 x^{16} + 661125 x^{14} + 14478125 x^{12} + 174378125 x^{10} + 1117890625 x^{8} + 3526640625 x^{6} + 5125000000 x^{4} + 2962890625 x^{2} + 400390625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(44998002377408544344171356675696640000000000=2^{20}\cdot 5^{10}\cdot 41^{19}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $152.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(820=2^{2}\cdot 5\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{820}(799,·)$, $\chi_{820}(1,·)$, $\chi_{820}(579,·)$, $\chi_{820}(441,·)$, $\chi_{820}(201,·)$, $\chi_{820}(459,·)$, $\chi_{820}(141,·)$, $\chi_{820}(461,·)$, $\chi_{820}(81,·)$, $\chi_{820}(279,·)$, $\chi_{820}(221,·)$, $\chi_{820}(159,·)$, $\chi_{820}(419,·)$, $\chi_{820}(39,·)$, $\chi_{820}(681,·)$, $\chi_{820}(759,·)$, $\chi_{820}(761,·)$, $\chi_{820}(699,·)$, $\chi_{820}(701,·)$, $\chi_{820}(319,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{1875} a^{8} + \frac{1}{3}$, $\frac{1}{1875} a^{9} + \frac{1}{3} a$, $\frac{1}{9375} a^{10} + \frac{1}{15} a^{2}$, $\frac{1}{9375} a^{11} + \frac{1}{15} a^{3}$, $\frac{1}{46875} a^{12} + \frac{1}{75} a^{4}$, $\frac{1}{46875} a^{13} + \frac{1}{75} a^{5}$, $\frac{1}{234375} a^{14} + \frac{1}{375} a^{6}$, $\frac{1}{234375} a^{15} + \frac{1}{375} a^{7}$, $\frac{1}{256640625} a^{16} + \frac{2}{5703125} a^{14} + \frac{7}{684375} a^{12} - \frac{2}{136875} a^{10} + \frac{53}{410625} a^{8} - \frac{34}{5475} a^{4} - \frac{17}{219} a^{2} - \frac{110}{657}$, $\frac{1}{256640625} a^{17} + \frac{2}{5703125} a^{15} + \frac{7}{684375} a^{13} - \frac{2}{136875} a^{11} + \frac{53}{410625} a^{9} - \frac{34}{5475} a^{5} - \frac{17}{219} a^{3} - \frac{110}{657} a$, $\frac{1}{7536035091796875} a^{18} + \frac{1762651}{1507207018359375} a^{16} + \frac{18641914}{20096093578125} a^{14} - \frac{9177052}{6698697859375} a^{12} - \frac{3830878}{165173371875} a^{10} + \frac{67638688}{482306245875} a^{8} - \frac{112461062}{32153749725} a^{6} + \frac{75059731}{10717916575} a^{4} - \frac{1443614141}{19292249835} a^{2} + \frac{653515540}{3858449967}$, $\frac{1}{7536035091796875} a^{19} + \frac{1762651}{1507207018359375} a^{17} + \frac{18641914}{20096093578125} a^{15} - \frac{9177052}{6698697859375} a^{13} - \frac{3830878}{165173371875} a^{11} + \frac{67638688}{482306245875} a^{9} - \frac{112461062}{32153749725} a^{7} + \frac{75059731}{10717916575} a^{5} - \frac{1443614141}{19292249835} a^{3} + \frac{653515540}{3858449967} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{843604}$, which has order $6748832$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5104264.636551031 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{41}) \), 4.0.27568400.4, 5.5.2825761.1, 10.10.327381934393961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R $20$ $20$ $20$ $20$ $20$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ $20$ $20$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
$5$5.10.5.2$x^{10} - 625 x^{2} + 6250$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.2$x^{10} - 625 x^{2} + 6250$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
41Data not computed