Normalized defining polynomial
\( x^{20} - 4 x^{19} - 86 x^{18} + 112 x^{17} + 3650 x^{16} + 4964 x^{15} - 65174 x^{14} - 261320 x^{13} + 23270 x^{12} + 2555012 x^{11} + 10098714 x^{10} + 30012420 x^{9} + 83682535 x^{8} + 202581748 x^{7} + 428878820 x^{6} + 768578152 x^{5} + 1262159266 x^{4} + 1741992792 x^{3} + 2387093088 x^{2} + 2006236288 x + 1874870161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4477477884486357182574183321487582167040000000000=2^{40}\cdot 5^{10}\cdot 71^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $270.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2840=2^{3}\cdot 5\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2840}(1,·)$, $\chi_{2840}(2439,·)$, $\chi_{2840}(1161,·)$, $\chi_{2840}(2699,·)$, $\chi_{2840}(2581,·)$, $\chi_{2840}(1421,·)$, $\chi_{2840}(1619,·)$, $\chi_{2840}(341,·)$, $\chi_{2840}(199,·)$, $\chi_{2840}(1119,·)$, $\chi_{2840}(1761,·)$, $\chi_{2840}(999,·)$, $\chi_{2840}(2539,·)$, $\chi_{2840}(1261,·)$, $\chi_{2840}(2419,·)$, $\chi_{2840}(2561,·)$, $\chi_{2840}(1141,·)$, $\chi_{2840}(2681,·)$, $\chi_{2840}(1019,·)$, $\chi_{2840}(1279,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} + \frac{3}{23} a^{11} - \frac{1}{23} a^{10} + \frac{5}{23} a^{9} + \frac{5}{23} a^{8} + \frac{6}{23} a^{7} - \frac{7}{23} a^{6} - \frac{11}{23} a^{5} - \frac{10}{23} a^{3} - \frac{10}{23} a^{2} + \frac{3}{23} a - \frac{7}{23}$, $\frac{1}{943} a^{13} - \frac{7}{943} a^{12} - \frac{399}{943} a^{11} + \frac{199}{943} a^{10} - \frac{321}{943} a^{9} - \frac{113}{943} a^{8} - \frac{228}{943} a^{7} - \frac{447}{943} a^{6} - \frac{212}{943} a^{5} - \frac{332}{943} a^{4} + \frac{458}{943} a^{3} - \frac{150}{943} a^{2} + \frac{400}{943} a + \frac{139}{943}$, $\frac{1}{943} a^{14} + \frac{3}{943} a^{12} - \frac{298}{943} a^{11} - \frac{14}{41} a^{10} - \frac{105}{943} a^{9} + \frac{293}{943} a^{8} - \frac{280}{943} a^{7} + \frac{103}{943} a^{6} - \frac{176}{943} a^{5} + \frac{20}{943} a^{4} + \frac{432}{943} a^{3} - \frac{445}{943} a^{2} - \frac{423}{943} a - \frac{298}{943}$, $\frac{1}{2829} a^{15} - \frac{1}{2829} a^{13} + \frac{58}{2829} a^{12} + \frac{1315}{2829} a^{11} - \frac{1229}{2829} a^{10} + \frac{1331}{2829} a^{9} - \frac{339}{943} a^{8} + \frac{1097}{2829} a^{7} - \frac{228}{943} a^{6} - \frac{854}{2829} a^{5} - \frac{1069}{2829} a^{4} + \frac{101}{2829} a^{3} - \frac{274}{2829} a^{2} - \frac{914}{2829} a + \frac{40}{123}$, $\frac{1}{2829} a^{16} - \frac{1}{2829} a^{14} + \frac{1}{2829} a^{13} - \frac{8}{2829} a^{12} - \frac{626}{2829} a^{11} + \frac{197}{2829} a^{10} + \frac{61}{943} a^{9} - \frac{1072}{2829} a^{8} - \frac{283}{943} a^{7} - \frac{98}{2829} a^{6} - \frac{1162}{2829} a^{5} - \frac{778}{2829} a^{4} - \frac{673}{2829} a^{3} - \frac{605}{2829} a^{2} + \frac{1244}{2829} a + \frac{434}{943}$, $\frac{1}{65067} a^{17} + \frac{8}{65067} a^{16} - \frac{34}{65067} a^{14} + \frac{1}{2829} a^{13} + \frac{1210}{65067} a^{12} + \frac{21050}{65067} a^{11} + \frac{593}{65067} a^{10} - \frac{6836}{65067} a^{9} - \frac{4952}{65067} a^{8} - \frac{1768}{21689} a^{7} + \frac{20146}{65067} a^{6} + \frac{22315}{65067} a^{5} + \frac{25961}{65067} a^{4} - \frac{394}{1587} a^{3} + \frac{5861}{21689} a^{2} + \frac{23489}{65067} a + \frac{16568}{65067}$, $\frac{1}{26871231712241187779223} a^{18} + \frac{23709815348783380}{26871231712241187779223} a^{17} + \frac{404760264558932269}{26871231712241187779223} a^{16} - \frac{210477022663887136}{26871231712241187779223} a^{15} - \frac{356458923398410546}{8957077237413729259741} a^{14} + \frac{10952749844187248876}{26871231712241187779223} a^{13} + \frac{474604130541469756846}{26871231712241187779223} a^{12} + \frac{475034137818640372487}{8957077237413729259741} a^{11} + \frac{138927038141555347381}{655395895420516775103} a^{10} + \frac{3182418202301505985944}{8957077237413729259741} a^{9} + \frac{6628547864800467196466}{26871231712241187779223} a^{8} + \frac{122776769496273894425}{655395895420516775103} a^{7} + \frac{2901907307636400450146}{8957077237413729259741} a^{6} - \frac{11973016315959896119247}{26871231712241187779223} a^{5} + \frac{644434478851841334593}{26871231712241187779223} a^{4} + \frac{1434573254205490652606}{26871231712241187779223} a^{3} - \frac{6981621592428741551227}{26871231712241187779223} a^{2} - \frac{94963577499431109197}{218465298473505591701} a + \frac{12381623581866228556252}{26871231712241187779223}$, $\frac{1}{10437941033135815563078682370204940305838885129} a^{19} + \frac{71262446148564250445551}{10437941033135815563078682370204940305838885129} a^{18} + \frac{24347700089171696606535750587009672540755}{10437941033135815563078682370204940305838885129} a^{17} - \frac{352869519527845449322309340687894942043814}{10437941033135815563078682370204940305838885129} a^{16} + \frac{528686422025056931901010296692096566209564}{3479313677711938521026227456734980101946295043} a^{15} + \frac{1006411145142989331079452181040369795530889}{10437941033135815563078682370204940305838885129} a^{14} + \frac{4417069530436622636309948755619038227413284}{10437941033135815563078682370204940305838885129} a^{13} + \frac{55568549219231021815390363054694235934652551}{3479313677711938521026227456734980101946295043} a^{12} - \frac{1840994902708837005201166692541528988180222095}{10437941033135815563078682370204940305838885129} a^{11} + \frac{103559302433417548311686477078266866010907823}{3479313677711938521026227456734980101946295043} a^{10} + \frac{55254135049218859741531521531099619964993830}{254583927637458916172650789517193665996070369} a^{9} - \frac{3542251893489954086292566194373246471346083015}{10437941033135815563078682370204940305838885129} a^{8} + \frac{929188148813713851310329253623141500791341441}{3479313677711938521026227456734980101946295043} a^{7} - \frac{2203071046595661827465592076582512401122877789}{10437941033135815563078682370204940305838885129} a^{6} - \frac{3555490645033389972474478706892776094197511682}{10437941033135815563078682370204940305838885129} a^{5} + \frac{3999424816107369778782193289459690108009314622}{10437941033135815563078682370204940305838885129} a^{4} - \frac{2198982149710195926788210659105827388205867182}{10437941033135815563078682370204940305838885129} a^{3} - \frac{1719672957320389791092644722850389933054448892}{3479313677711938521026227456734980101946295043} a^{2} + \frac{2281979447874759109362563711934706900682009431}{10437941033135815563078682370204940305838885129} a - \frac{1648733696362573607977605267614274944356770117}{3479313677711938521026227456734980101946295043}$
Class group and class number
$C_{11}\times C_{16231402}$, which has order $178545422$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 116573225.49574807 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-5})\), 5.5.25411681.1, 10.0.2066411299986435200000.1, 10.0.66125161599565926400000.1, 10.10.21160051711861096448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $71$ | 71.10.8.1 | $x^{10} - 39121 x^{5} + 811858091$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 71.10.8.1 | $x^{10} - 39121 x^{5} + 811858091$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |