Normalized defining polynomial
\( x^{20} - 5 x^{19} + 18 x^{18} - 124 x^{17} + 331 x^{16} - 436 x^{15} + 2185 x^{14} - 2861 x^{13} - 7646 x^{12} + 13968 x^{11} - 31000 x^{10} + 95621 x^{9} + 59848 x^{8} - 486474 x^{7} + 118099 x^{6} - 540658 x^{5} + 939687 x^{4} + 4177271 x^{3} + 175064 x^{2} - 1775774 x + 473141 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(446393749322684446560596661376953125=5^{14}\cdot 53^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} + \frac{1}{8} a^{14} - \frac{1}{4} a^{12} + \frac{3}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8}$, $\frac{1}{120} a^{18} - \frac{1}{60} a^{17} + \frac{11}{120} a^{16} + \frac{1}{120} a^{15} + \frac{23}{120} a^{14} - \frac{1}{15} a^{13} + \frac{1}{15} a^{12} + \frac{7}{40} a^{11} - \frac{1}{120} a^{10} - \frac{1}{20} a^{9} - \frac{19}{40} a^{8} - \frac{1}{30} a^{7} - \frac{47}{120} a^{6} - \frac{41}{120} a^{5} - \frac{19}{40} a^{4} + \frac{13}{30} a^{3} - \frac{1}{4} a^{2} + \frac{19}{120} a - \frac{19}{120}$, $\frac{1}{472043443338023363665628042792558421923132972542319595958328520} a^{19} - \frac{99866897475728750276541263992377419526051680503341210273673}{472043443338023363665628042792558421923132972542319595958328520} a^{18} - \frac{6595452838953454706496312456985825953274765683533471173065309}{157347814446007787888542680930852807307710990847439865319442840} a^{17} - \frac{170456241135607845808863702415396156829015001048537107599513}{15734781444600778788854268093085280730771099084743986531944284} a^{16} + \frac{2100869036074330496932346714753003786332751715879948855968748}{19668476805750973486067835116356600913463873855929983164930355} a^{15} - \frac{27690783956649489002485416876681624495770914556067648580662307}{157347814446007787888542680930852807307710990847439865319442840} a^{14} - \frac{9877838536579824704824615411247050265882344866294371878308419}{78673907223003893944271340465426403653855495423719932659721420} a^{13} - \frac{54388966559806005093994265905221932155223384766274884858794077}{472043443338023363665628042792558421923132972542319595958328520} a^{12} - \frac{24337496563185816862973795566302426208160083456217907631918871}{236021721669011681832814021396279210961566486271159797979164260} a^{11} - \frac{1329394841056190831271840968527500776399911304803025901966209}{94408688667604672733125608558511684384626594508463919191665704} a^{10} + \frac{78127708788469214510574725665315462276201493326598870719217223}{157347814446007787888542680930852807307710990847439865319442840} a^{9} - \frac{16139306457667682772807499495326141339335723721812956529211277}{472043443338023363665628042792558421923132972542319595958328520} a^{8} + \frac{42158168846833313814556334278938183318974014041973402190372419}{157347814446007787888542680930852807307710990847439865319442840} a^{7} + \frac{37254984769636899805406792455728158061441515079680725380741823}{236021721669011681832814021396279210961566486271159797979164260} a^{6} - \frac{79669502046280154362688480050565691597735432886562428294422193}{236021721669011681832814021396279210961566486271159797979164260} a^{5} + \frac{90621927863511766362388932472482340367319880899686422807848919}{472043443338023363665628042792558421923132972542319595958328520} a^{4} + \frac{12303371643751193075865562883297747391732402975776144269244846}{59005430417252920458203505349069802740391621567789949494791065} a^{3} - \frac{206812700522500446203958957123527459637931424600670964337383181}{472043443338023363665628042792558421923132972542319595958328520} a^{2} - \frac{26985123190845651779444830666678305828381741514004918979100923}{78673907223003893944271340465426403653855495423719932659721420} a + \frac{38540330804029730654902081943934152971067046479148737173744859}{472043443338023363665628042792558421923132972542319595958328520}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 745932630.7132764 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.3721925.1, 5.1.351125.1, 10.2.6534304578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 53 | Data not computed | ||||||