Normalized defining polynomial
\( x^{20} - 6 x^{19} + 31 x^{18} - 42 x^{17} + 210 x^{16} - 1098 x^{15} + 17509 x^{14} - 111411 x^{13} + 658324 x^{12} - 2760297 x^{11} + 10840035 x^{10} - 33719964 x^{9} + 100182550 x^{8} - 240286113 x^{7} + 561487303 x^{6} - 1028739177 x^{5} + 1892748576 x^{4} - 2478325380 x^{3} + 3484263346 x^{2} - 2600226987 x + 2591170963 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4453711553843801272018640137577958609649=23^{10}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{6} + \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{7} + \frac{2}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} + \frac{2}{9} a^{4} + \frac{1}{3} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{2}{9} a^{5} + \frac{1}{3} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{16} + \frac{4}{81} a^{15} - \frac{4}{81} a^{14} + \frac{1}{27} a^{13} - \frac{1}{81} a^{12} + \frac{8}{81} a^{11} - \frac{10}{81} a^{10} + \frac{7}{81} a^{9} - \frac{1}{27} a^{8} + \frac{1}{81} a^{7} - \frac{8}{81} a^{6} + \frac{38}{81} a^{5} - \frac{29}{81} a^{4} - \frac{10}{27} a^{3} + \frac{7}{81} a^{2} - \frac{38}{81} a - \frac{37}{81}$, $\frac{1}{81} a^{17} - \frac{2}{81} a^{15} + \frac{1}{81} a^{14} - \frac{4}{81} a^{13} + \frac{1}{27} a^{12} + \frac{4}{27} a^{11} - \frac{7}{81} a^{10} - \frac{13}{81} a^{9} - \frac{5}{81} a^{8} - \frac{4}{27} a^{7} - \frac{11}{81} a^{6} - \frac{10}{81} a^{5} - \frac{4}{81} a^{4} + \frac{10}{81} a^{3} - \frac{10}{27} a^{2} + \frac{34}{81} a - \frac{14}{81}$, $\frac{1}{243} a^{18} - \frac{4}{81} a^{14} - \frac{1}{27} a^{13} - \frac{8}{243} a^{12} + \frac{4}{27} a^{11} + \frac{4}{81} a^{10} - \frac{2}{27} a^{8} + \frac{2}{27} a^{7} - \frac{17}{243} a^{6} - \frac{2}{9} a^{5} + \frac{20}{81} a^{4} + \frac{7}{27} a^{3} + \frac{31}{81} a^{2} - \frac{7}{27} a + \frac{97}{243}$, $\frac{1}{39739951015292341520950118381661621669272858791986481391195691} a^{19} - \frac{108786486207841226101688059510631341268070208805944562411}{163538893067046672925720651776385274359147567045211857576937} a^{18} + \frac{39689127506636009464269254868186939209086171704527081375485}{13246650338430780506983372793887207223090952930662160463731897} a^{17} + \frac{9314836084159298650242940738512282814199137249961192223622}{13246650338430780506983372793887207223090952930662160463731897} a^{16} + \frac{154107097759800207151322308212812857166729689719740319504157}{13246650338430780506983372793887207223090952930662160463731897} a^{15} - \frac{2984730972899134684591960588477720159004838196382107919720}{4415550112810260168994457597962402407696984310220720154577299} a^{14} - \frac{1342820820418352349143478767831614579698805327674089116999751}{39739951015292341520950118381661621669272858791986481391195691} a^{13} + \frac{44371288462649336643341920089226318373316367445526667603166}{13246650338430780506983372793887207223090952930662160463731897} a^{12} - \frac{533139083065428171309431941792293405585556212975640940943181}{4415550112810260168994457597962402407696984310220720154577299} a^{11} + \frac{1628232798613082382961668528639154632666221288386549604119228}{13246650338430780506983372793887207223090952930662160463731897} a^{10} + \frac{601966406293587298892087950162303375412787014276331512818400}{4415550112810260168994457597962402407696984310220720154577299} a^{9} - \frac{1854056658917654393088404452403770831274103671713262722040024}{13246650338430780506983372793887207223090952930662160463731897} a^{8} + \frac{6461390358087296780926538450807222307443038445231795939887939}{39739951015292341520950118381661621669272858791986481391195691} a^{7} - \frac{44366924742586480120852783350497333255449034905638803387776}{13246650338430780506983372793887207223090952930662160463731897} a^{6} - \frac{334206429687127871091374392420552770236387421686259726642251}{4415550112810260168994457597962402407696984310220720154577299} a^{5} + \frac{2179999036297463326932494155936071906318325835056033573253837}{4415550112810260168994457597962402407696984310220720154577299} a^{4} - \frac{63387894692835018986860384208481386588237107433412668256103}{13246650338430780506983372793887207223090952930662160463731897} a^{3} - \frac{1781351892137484421067039841814862094240984833751522434601542}{13246650338430780506983372793887207223090952930662160463731897} a^{2} + \frac{19466832934952645399781122815381944881906897647974292524057010}{39739951015292341520950118381661621669272858791986481391195691} a + \frac{422219159556602681636378255547838694869707075510885782860849}{4415550112810260168994457597962402407696984310220720154577299}$
Class group and class number
$C_{2}\times C_{2}\times C_{62}\times C_{3162}$, which has order $784176$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), \(\Q(\sqrt{-9223}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-23}, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.66736133794547922343.1 x5, 10.0.166424273801865143.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||