Normalized defining polynomial
\( x^{20} - 2 x^{19} - 111 x^{18} + 260 x^{17} + 6709 x^{16} - 17866 x^{15} - 248884 x^{14} + 753552 x^{13} + 6380662 x^{12} - 21730684 x^{11} - 109533967 x^{10} + 422781594 x^{9} + 1312082182 x^{8} - 5617531168 x^{7} - 8933825593 x^{6} + 42036545916 x^{5} + 51009829022 x^{4} - 135889082190 x^{3} - 111289384821 x^{2} - 1475502846552 x + 6218998361089 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(445158124777785892479889640032765008613795840000000000=2^{20}\cdot 5^{10}\cdot 181^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $481.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3620=2^{2}\cdot 5\cdot 181\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3620}(1,·)$, $\chi_{3620}(1221,·)$, $\chi_{3620}(961,·)$, $\chi_{3620}(2761,·)$, $\chi_{3620}(139,·)$, $\chi_{3620}(3021,·)$, $\chi_{3620}(2659,·)$, $\chi_{3620}(599,·)$, $\chi_{3620}(3481,·)$, $\chi_{3620}(859,·)$, $\chi_{3620}(2399,·)$, $\chi_{3620}(3619,·)$, $\chi_{3620}(421,·)$, $\chi_{3620}(3561,·)$, $\chi_{3620}(3119,·)$, $\chi_{3620}(59,·)$, $\chi_{3620}(501,·)$, $\chi_{3620}(361,·)$, $\chi_{3620}(3259,·)$, $\chi_{3620}(3199,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{43} a^{16} + \frac{10}{43} a^{15} + \frac{16}{43} a^{14} + \frac{12}{43} a^{13} + \frac{6}{43} a^{12} + \frac{2}{43} a^{11} + \frac{21}{43} a^{10} - \frac{13}{43} a^{9} + \frac{7}{43} a^{8} - \frac{19}{43} a^{7} - \frac{18}{43} a^{6} - \frac{1}{43} a^{5} - \frac{16}{43} a^{4} - \frac{19}{43} a^{3} + \frac{11}{43} a^{2} + \frac{2}{43} a - \frac{2}{43}$, $\frac{1}{731} a^{17} - \frac{6}{731} a^{16} - \frac{144}{731} a^{15} - \frac{115}{731} a^{14} + \frac{287}{731} a^{13} + \frac{78}{731} a^{12} + \frac{32}{731} a^{11} - \frac{91}{731} a^{10} + \frac{3}{17} a^{9} - \frac{45}{731} a^{8} - \frac{359}{731} a^{7} + \frac{158}{731} a^{6} + \frac{280}{731} a^{4} - \frac{29}{731} a^{3} + \frac{256}{731} a^{2} - \frac{335}{731} a - \frac{183}{731}$, $\frac{1}{4038882258037151} a^{18} + \frac{12602171410}{55327154219687} a^{17} + \frac{1707540706657}{576983179719593} a^{16} + \frac{529451230427480}{4038882258037151} a^{15} + \frac{1536716840112046}{4038882258037151} a^{14} - \frac{100277393059017}{237581309296303} a^{13} + \frac{1819070247668614}{4038882258037151} a^{12} + \frac{384703218143336}{4038882258037151} a^{11} - \frac{1959103513414258}{4038882258037151} a^{10} - \frac{835834795883369}{4038882258037151} a^{9} - \frac{898170143809046}{4038882258037151} a^{8} - \frac{1915271082767837}{4038882258037151} a^{7} + \frac{1749332899591538}{4038882258037151} a^{6} + \frac{240871305291258}{4038882258037151} a^{5} - \frac{412746724835870}{4038882258037151} a^{4} + \frac{1919843600968495}{4038882258037151} a^{3} - \frac{1656507891989716}{4038882258037151} a^{2} + \frac{1450695772564706}{4038882258037151} a - \frac{1542954835866894}{4038882258037151}$, $\frac{1}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{19} - \frac{2886465650515106343478861755654071283195080746676359684952073927533}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{18} - \frac{14200337010153646427089506709603006487837285607961056803008256635543283016056714}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{17} + \frac{11246890459682348757627859188773295217469419905059794633955163480846470359426321}{1637884368191411202873449412975823369945661415299049269054263610757074356261569733} a^{16} + \frac{4264189702851375950183597131632798596405781875536978234324382878160195663437492332}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{15} - \frac{3852724467682616094072743285309675816052642608169176698558169078481281508054794533}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{14} - \frac{2023798029651806810617167967886344465413097344938557405039795924254500566565759336}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{13} + \frac{648784927134902893425322367736334273282294084012766782517183758986588957917095807}{4445686142233830407799362692362949146995366698668848016004429800626344681281403561} a^{12} + \frac{2303206742598425753797433589666225120839152276541601809142862326051465942896758037}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{11} - \frac{1667436003523761062392235985276588836370898929567930782128039512943086030768277456}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{10} + \frac{1306431466231648694035620455961105431060384022019204474177479100922477679982737695}{4445686142233830407799362692362949146995366698668848016004429800626344681281403561} a^{9} - \frac{15058724174188900968291453765297989880566362811721531590953791057061889235540984847}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{8} - \frac{9877300537268355156937147241913398287888653397328652059477076190183838395301469696}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{7} - \frac{7057228110570387459308706125276209359137349897243704694716541951117955922539483249}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{6} - \frac{11124743569703862288807699334685795387249305758506113066263172723460488238769260120}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{5} - \frac{15524840271072935235057635831099319236626303587649679425863461095355787039909269479}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{4} + \frac{3811022500317563037254650657232336448800037675877183434136080666870684360123361939}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{3} + \frac{1866366935801106838082253535552814157987839847850969555156171446027523000359197464}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a^{2} + \frac{7033715373798914879856575361953321936785054619310656724346881167702252957140292668}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927} a + \frac{2844586672343965275261627141712932570428972814442082567974799801694586993949921176}{31119802995636812854595538846540644028967566890681936112031008604384412768969824927}$
Class group and class number
$C_{2}\times C_{709227660}$, which has order $1418455320$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2738636751.4469314 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $181$ | 181.10.9.1 | $x^{10} - 181$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 181.10.9.1 | $x^{10} - 181$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |