Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} + 2 x^{17} + 8 x^{16} - 14 x^{15} + 14 x^{14} + 18 x^{13} + 28 x^{12} - 30 x^{11} + 26 x^{10} + 44 x^{9} + 49 x^{8} - 18 x^{7} + 8 x^{6} + 26 x^{5} + 30 x^{4} + 4 x^{3} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(444622235903180809437184=2^{30}\cdot 13^{4}\cdot 347^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2467251559} a^{19} + \frac{51450321}{2467251559} a^{18} - \frac{769011446}{2467251559} a^{17} - \frac{107115158}{2467251559} a^{16} + \frac{199048510}{2467251559} a^{15} + \frac{417795013}{2467251559} a^{14} + \frac{949504495}{2467251559} a^{13} - \frac{684211120}{2467251559} a^{12} + \frac{285707572}{2467251559} a^{11} + \frac{240511030}{2467251559} a^{10} + \frac{748730843}{2467251559} a^{9} - \frac{840291962}{2467251559} a^{8} + \frac{924928827}{2467251559} a^{7} + \frac{207210636}{2467251559} a^{6} + \frac{950759020}{2467251559} a^{5} - \frac{735784536}{2467251559} a^{4} + \frac{1211961290}{2467251559} a^{3} - \frac{1175712100}{2467251559} a^{2} - \frac{1219772570}{2467251559} a - \frac{1096885826}{2467251559}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{185986777}{2467251559} a^{19} + \frac{356327866}{2467251559} a^{18} - \frac{679193826}{2467251559} a^{17} + \frac{181756459}{2467251559} a^{16} - \frac{1636212498}{2467251559} a^{15} + \frac{523812804}{2467251559} a^{14} - \frac{3622533843}{2467251559} a^{13} + \frac{284569919}{2467251559} a^{12} - \frac{6972696458}{2467251559} a^{11} - \frac{8397606150}{2467251559} a^{10} - \frac{4582115725}{2467251559} a^{9} - \frac{702400414}{2467251559} a^{8} - \frac{13026499996}{2467251559} a^{7} - \frac{23277714470}{2467251559} a^{6} - \frac{704015138}{2467251559} a^{5} + \frac{343340907}{2467251559} a^{4} - \frac{5587701400}{2467251559} a^{3} - \frac{13190487165}{2467251559} a^{2} - \frac{1225346246}{2467251559} a + \frac{121319396}{2467251559} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5076.15673611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n279 |
| Character table for t20n279 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.3.4511.1, 10.0.20837499904.1, 10.0.20837499904.2, 10.6.20837499904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||