Normalized defining polynomial
\( x^{20} - 8 x^{19} + 51 x^{18} - 218 x^{17} + 1139 x^{16} - 4578 x^{15} + 22149 x^{14} - 79515 x^{13} + 337750 x^{12} - 1065569 x^{11} + 3997785 x^{10} - 10651910 x^{9} + 34877966 x^{8} - 76179063 x^{7} + 218588868 x^{6} - 377902854 x^{5} + 937985122 x^{4} - 1187336885 x^{3} + 2471905719 x^{2} - 1824170168 x + 2887254431 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4440049185593367529770294835648190910892129=23^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(943=23\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{943}(1,·)$, $\chi_{943}(898,·)$, $\chi_{943}(392,·)$, $\chi_{943}(139,·)$, $\chi_{943}(461,·)$, $\chi_{943}(206,·)$, $\chi_{943}(783,·)$, $\chi_{943}(277,·)$, $\chi_{943}(599,·)$, $\chi_{943}(344,·)$, $\chi_{943}(346,·)$, $\chi_{943}(666,·)$, $\chi_{943}(160,·)$, $\chi_{943}(737,·)$, $\chi_{943}(482,·)$, $\chi_{943}(804,·)$, $\chi_{943}(551,·)$, $\chi_{943}(45,·)$, $\chi_{943}(942,·)$, $\chi_{943}(597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{747} a^{18} + \frac{31}{747} a^{17} - \frac{13}{249} a^{16} - \frac{31}{249} a^{15} + \frac{11}{249} a^{14} - \frac{4}{249} a^{13} - \frac{7}{249} a^{12} - \frac{2}{249} a^{11} + \frac{10}{747} a^{10} + \frac{118}{747} a^{9} - \frac{9}{83} a^{8} + \frac{25}{249} a^{7} + \frac{94}{249} a^{6} - \frac{92}{249} a^{5} + \frac{46}{249} a^{4} + \frac{110}{249} a^{3} + \frac{70}{747} a^{2} + \frac{292}{747} a - \frac{20}{249}$, $\frac{1}{41300173970734277561221976574169198900321104720923847303993678501} a^{19} + \frac{3110428605333974222370275754707849158616743847203678026437192}{13766724656911425853740658858056399633440368240307949101331226167} a^{18} - \frac{701280102426832815006376798816205101599149609518224230065931824}{41300173970734277561221976574169198900321104720923847303993678501} a^{17} - \frac{733279588598990582249135427481516820289724086083468642373261920}{41300173970734277561221976574169198900321104720923847303993678501} a^{16} + \frac{32341635652859687142015995898313307367438113009628054758204955}{4588908218970475284580219619352133211146789413435983033777075389} a^{15} - \frac{1698224869269817259492312227768086107003126994253087131983463007}{13766724656911425853740658858056399633440368240307949101331226167} a^{14} - \frac{98568587072887004234285109446069010764233187645982381239430983}{13766724656911425853740658858056399633440368240307949101331226167} a^{13} - \frac{1225072742838805415988201564280353749805163220432623622594099248}{13766724656911425853740658858056399633440368240307949101331226167} a^{12} + \frac{4837626605669510458852323893543788285274466439955677660734194539}{41300173970734277561221976574169198900321104720923847303993678501} a^{11} - \frac{43428694346353143122596486867349121802574565396606880035521383}{4588908218970475284580219619352133211146789413435983033777075389} a^{10} + \frac{5713016261364527121475069661222014968489759951120844134753174947}{41300173970734277561221976574169198900321104720923847303993678501} a^{9} + \frac{1685144187784254731624289967722777398718865564500878690830606969}{41300173970734277561221976574169198900321104720923847303993678501} a^{8} + \frac{1834758827745891838683407614268679463034672490542289003540167191}{4588908218970475284580219619352133211146789413435983033777075389} a^{7} + \frac{4586826092393749968760554053069215611508056216103254970807570471}{13766724656911425853740658858056399633440368240307949101331226167} a^{6} - \frac{1274352090217373960199032507607534269385541627360104476344695865}{13766724656911425853740658858056399633440368240307949101331226167} a^{5} - \frac{41878722945583954896491759416279288212579288814302141597737564}{13766724656911425853740658858056399633440368240307949101331226167} a^{4} + \frac{8862359451408781489077644540653853340586899277008039789731479363}{41300173970734277561221976574169198900321104720923847303993678501} a^{3} - \frac{3424928226120687398544430892749312868050213070223492319099497071}{13766724656911425853740658858056399633440368240307949101331226167} a^{2} - \frac{10407201539883894582152630806983080918520221409078263205447799555}{41300173970734277561221976574169198900321104720923847303993678501} a - \frac{7341426425428674449235217633807750467519554131393251805051554374}{41300173970734277561221976574169198900321104720923847303993678501}$
Class group and class number
$C_{5466120}$, which has order $5466120$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.636551031 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-943}) \), \(\Q(\sqrt{-23}, \sqrt{41})\), 5.5.2825761.1, 10.10.327381934393961.1, 10.0.51393717603976344503.2, 10.0.2107142421763030124623.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $41$ | 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |