Normalized defining polynomial
\( x^{20} + 80 x^{18} + 3221 x^{16} - 36520 x^{14} - 1396144 x^{12} - 35281220 x^{10} + 46016871 x^{8} + 9912462280 x^{6} + 117549415351 x^{4} + 541362815880 x^{2} + 1042471630225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(443223629840246396758117587996045905756160000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(3011,·)$, $\chi_{3720}(709,·)$, $\chi_{3720}(3719,·)$, $\chi_{3720}(841,·)$, $\chi_{3720}(2891,·)$, $\chi_{3720}(1549,·)$, $\chi_{3720}(2509,·)$, $\chi_{3720}(721,·)$, $\chi_{3720}(2999,·)$, $\chi_{3720}(959,·)$, $\chi_{3720}(2651,·)$, $\chi_{3720}(481,·)$, $\chi_{3720}(1211,·)$, $\chi_{3720}(3239,·)$, $\chi_{3720}(1069,·)$, $\chi_{3720}(2761,·)$, $\chi_{3720}(2171,·)$, $\chi_{3720}(829,·)$, $\chi_{3720}(2879,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{9} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{6} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{7} + \frac{2}{5} a^{3}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{8} + \frac{2}{5} a^{4}$, $\frac{1}{185} a^{17} - \frac{11}{185} a^{15} + \frac{4}{185} a^{13} + \frac{1}{37} a^{11} - \frac{71}{185} a^{9} - \frac{32}{185} a^{7} + \frac{71}{185} a^{5} - \frac{62}{185} a^{3} - \frac{6}{37} a$, $\frac{1}{1822478021047919430853927219804692700998964118710805} a^{18} - \frac{18705411964705666531485207273384054154737567854621}{1822478021047919430853927219804692700998964118710805} a^{16} + \frac{54014665221785544963600334769352049082364854505249}{1822478021047919430853927219804692700998964118710805} a^{14} - \frac{66520060846261525660776574217153504825021991703}{27201164493252528818715331638876010462671106249415} a^{12} - \frac{14309769166539922314893537794394520691058810126207}{1822478021047919430853927219804692700998964118710805} a^{10} - \frac{167700323229726088894134623197414178563355019906180}{364495604209583886170785443960938540199792823742161} a^{8} - \frac{354109735349180812838047801900523900817453053110902}{1822478021047919430853927219804692700998964118710805} a^{6} + \frac{720414107601045184233983318864941283644258768470652}{1822478021047919430853927219804692700998964118710805} a^{4} - \frac{803562825429855712499307244971411373676946686391071}{1822478021047919430853927219804692700998964118710805} a^{2} - \frac{4807530540871566319626996232211475824611615333718}{9851232546204969896507714701646987572967373614653}$, $\frac{1}{50291280990817336694414121630510495084066414855824663975} a^{19} + \frac{4955369381366640712595686539354416733400828364045396}{10058256198163467338882824326102099016813282971164932795} a^{17} - \frac{4446900720249709880407480400850398955251692725909620134}{50291280990817336694414121630510495084066414855824663975} a^{15} + \frac{5803744778925458415499511393779045409227353775706571}{150123226838260706550489915314956701743481835390521385} a^{13} + \frac{4989250776814348718832878801973040578671937949440646826}{50291280990817336694414121630510495084066414855824663975} a^{11} - \frac{4996594632967835997958848938722129747336739643888531944}{10058256198163467338882824326102099016813282971164932795} a^{9} + \frac{13077068434258832512072084649202160656325214314036214721}{50291280990817336694414121630510495084066414855824663975} a^{7} + \frac{4591106105343385365930419872900557289296655603491539998}{10058256198163467338882824326102099016813282971164932795} a^{5} + \frac{4395496134336915855032102024944328085826899908951188586}{50291280990817336694414121630510495084066414855824663975} a^{3} + \frac{4516592541339874039655167976415148683624884237803823628}{10058256198163467338882824326102099016813282971164932795} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{44}\times C_{8888}$, which has order $200228864$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3425669156.8503156 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-310}) \), \(\Q(\sqrt{-465}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{6}, \sqrt{-310})\), 5.5.923521.1, 10.0.2707417309252710400000.1, 10.0.20559450192137769600000.1, 10.10.6791250644112605184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31 | Data not computed | ||||||