Normalized defining polynomial
\( x^{20} - 32 x^{18} + 1397 x^{16} - 114312 x^{14} + 2159792 x^{12} - 19145372 x^{10} + 476229607 x^{8} + 8331032808 x^{6} + 58165466967 x^{4} + 171331481608 x^{2} + 312893678161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(443223629840246396758117587996045905756160000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(3719,·)$, $\chi_{3720}(841,·)$, $\chi_{3720}(469,·)$, $\chi_{3720}(2999,·)$, $\chi_{3720}(721,·)$, $\chi_{3720}(2389,·)$, $\chi_{3720}(3611,·)$, $\chi_{3720}(349,·)$, $\chi_{3720}(481,·)$, $\chi_{3720}(3349,·)$, $\chi_{3720}(3239,·)$, $\chi_{3720}(1331,·)$, $\chi_{3720}(3371,·)$, $\chi_{3720}(109,·)$, $\chi_{3720}(3251,·)$, $\chi_{3720}(2761,·)$, $\chi_{3720}(371,·)$, $\chi_{3720}(2879,·)$, $\chi_{3720}(959,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{4} + \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{5} + \frac{2}{5} a$, $\frac{1}{185} a^{14} + \frac{14}{185} a^{12} - \frac{6}{185} a^{10} - \frac{3}{37} a^{8} - \frac{16}{185} a^{6} + \frac{68}{185} a^{4} + \frac{21}{185} a^{2} - \frac{67}{185}$, $\frac{1}{185} a^{15} + \frac{14}{185} a^{13} - \frac{6}{185} a^{11} - \frac{3}{37} a^{9} - \frac{16}{185} a^{7} + \frac{68}{185} a^{5} + \frac{21}{185} a^{3} - \frac{67}{185} a$, $\frac{1}{925} a^{16} - \frac{54}{925} a^{12} - \frac{1}{185} a^{10} + \frac{46}{925} a^{8} - \frac{23}{185} a^{6} + \frac{216}{925} a^{4} + \frac{24}{185} a^{2} - \frac{209}{925}$, $\frac{1}{925} a^{17} - \frac{54}{925} a^{13} - \frac{1}{185} a^{11} + \frac{46}{925} a^{9} - \frac{23}{185} a^{7} + \frac{216}{925} a^{5} + \frac{24}{185} a^{3} - \frac{209}{925} a$, $\frac{1}{23853359890573765765237860037242309564486201125} a^{18} - \frac{8427636215352453877190675157557389553205366}{23853359890573765765237860037242309564486201125} a^{16} + \frac{31531137010085741479240735291095074359673916}{23853359890573765765237860037242309564486201125} a^{14} + \frac{557450820125168395129117724636720587032332969}{23853359890573765765237860037242309564486201125} a^{12} + \frac{1151575676961263842005237969160299166100677771}{23853359890573765765237860037242309564486201125} a^{10} - \frac{2048560439030322648443530749029813700602168911}{23853359890573765765237860037242309564486201125} a^{8} + \frac{9508218173988162710780250282245692507838338581}{23853359890573765765237860037242309564486201125} a^{6} - \frac{215109713901681042702124856634308729920844358}{644685402447939615276698919925467826067194625} a^{4} - \frac{371460522431690936088986536022990930972013744}{23853359890573765765237860037242309564486201125} a^{2} - \frac{490068247672955936190841663214310954419295846}{23853359890573765765237860037242309564486201125}$, $\frac{1}{13342830068630356782335336531172193458777081837090125} a^{19} + \frac{4201200040788223779627481126824740115386012663479}{13342830068630356782335336531172193458777081837090125} a^{17} + \frac{19738622372046556462514280751661309712904084385391}{13342830068630356782335336531172193458777081837090125} a^{15} + \frac{1020488605010154688575817712377739463867601102292039}{13342830068630356782335336531172193458777081837090125} a^{13} + \frac{1170427886531152801562458060382007953804853582682046}{13342830068630356782335336531172193458777081837090125} a^{11} - \frac{345800416143920518736363873501001629819239784773641}{13342830068630356782335336531172193458777081837090125} a^{9} + \frac{4562825629113916158914615071450326404728989148635981}{13342830068630356782335336531172193458777081837090125} a^{7} + \frac{3290509064783343683611391848284304974831466028418499}{13342830068630356782335336531172193458777081837090125} a^{5} - \frac{5927087491993947905438700377253376611662114271038269}{13342830068630356782335336531172193458777081837090125} a^{3} - \frac{6609355154884644185193631451114681152119623795487026}{13342830068630356782335336531172193458777081837090125} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{22}\times C_{44}\times C_{13332}$, which has order $412972032$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2725468819.573966 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $31$ | 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |