Normalized defining polynomial
\( x^{20} + 468 x^{18} + 83997 x^{16} + 7247988 x^{14} + 307624392 x^{12} + 6019595028 x^{10} + 56627249607 x^{8} + 246505701708 x^{6} + 412083596367 x^{4} + 217939545108 x^{2} + 265070961 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(443223629840246396758117587996045905756160000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(1349,·)$, $\chi_{3720}(841,·)$, $\chi_{3720}(371,·)$, $\chi_{3720}(1999,·)$, $\chi_{3720}(721,·)$, $\chi_{3720}(2479,·)$, $\chi_{3720}(1759,·)$, $\chi_{3720}(481,·)$, $\chi_{3720}(3611,·)$, $\chi_{3720}(869,·)$, $\chi_{3720}(1639,·)$, $\chi_{3720}(3371,·)$, $\chi_{3720}(1709,·)$, $\chi_{3720}(3439,·)$, $\chi_{3720}(3251,·)$, $\chi_{3720}(1331,·)$, $\chi_{3720}(1589,·)$, $\chi_{3720}(2761,·)$, $\chi_{3720}(3629,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{405} a^{8} + \frac{2}{45} a^{4} + \frac{1}{5}$, $\frac{1}{405} a^{9} + \frac{2}{45} a^{5} + \frac{1}{5} a$, $\frac{1}{1215} a^{10} + \frac{2}{135} a^{6} + \frac{1}{15} a^{2}$, $\frac{1}{1215} a^{11} + \frac{2}{135} a^{7} + \frac{1}{15} a^{3}$, $\frac{1}{3645} a^{12} + \frac{2}{45} a^{4} - \frac{2}{5}$, $\frac{1}{3645} a^{13} + \frac{2}{45} a^{5} - \frac{2}{5} a$, $\frac{1}{10935} a^{14} + \frac{2}{135} a^{6} - \frac{2}{15} a^{2}$, $\frac{1}{10935} a^{15} + \frac{2}{135} a^{7} - \frac{2}{15} a^{3}$, $\frac{1}{164025} a^{16} - \frac{1}{18225} a^{12} + \frac{1}{2025} a^{8} + \frac{1}{25} a^{4} + \frac{6}{25}$, $\frac{1}{10989675} a^{17} - \frac{4}{244215} a^{15} + \frac{49}{1221075} a^{13} - \frac{2}{9045} a^{11} + \frac{1}{1675} a^{9} - \frac{13}{1809} a^{7} + \frac{244}{15075} a^{5} - \frac{53}{335} a^{3} + \frac{236}{1675} a$, $\frac{1}{482156647054269185451070128450479625} a^{18} - \frac{255319374629668448695077623687}{160718882351423061817023376150159875} a^{16} + \frac{212016949826182351202416185911}{5952551198200854141371236153709625} a^{14} - \frac{554395929676263043496273879213}{17857653594602562424113708461128875} a^{12} - \frac{1794886947154498819850248655584}{5952551198200854141371236153709625} a^{10} - \frac{59725844740482426313795326821}{73488286397541409152731310539625} a^{8} - \frac{2138844428927097270578054932487}{220464859192624227458193931618875} a^{6} + \frac{272768173658262789164174144648}{24496095465847136384243770179875} a^{4} - \frac{10506258243879558037177768173329}{73488286397541409152731310539625} a^{2} + \frac{46298572862110522141958531144}{365613365161897557973787614625}$, $\frac{1}{482156647054269185451070128450479625} a^{19} - \frac{6702286319578109272902045742}{160718882351423061817023376150159875} a^{17} + \frac{562928176446167542012491034808}{17857653594602562424113708461128875} a^{15} + \frac{203267023464367670499202374238}{1984183732733618047123745384569875} a^{13} + \frac{325670570784507016397719509241}{5952551198200854141371236153709625} a^{11} - \frac{1071490027553417124671268154522}{1984183732733618047123745384569875} a^{9} - \frac{2943193832283271898120387684662}{220464859192624227458193931618875} a^{7} + \frac{4326853992553280599303359888712}{220464859192624227458193931618875} a^{5} + \frac{2469598883017807434512608314432}{24496095465847136384243770179875} a^{3} - \frac{11712649174598684065586652557957}{24496095465847136384243770179875} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{202}\times C_{66660}$, which has order $430890240$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2425171378.8887568 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $31$ | 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |