Normalized defining polynomial
\( x^{20} + 440 x^{18} + 74069 x^{16} + 5921760 x^{14} + 250897376 x^{12} + 5504137940 x^{10} + 47796205399 x^{8} - 192927061440 x^{6} - 4378808955609 x^{4} + 9957442719440 x^{2} + 239981769909025 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(443223629840246396758117587996045905756160000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(2819,·)$, $\chi_{3720}(901,·)$, $\chi_{3720}(3719,·)$, $\chi_{3720}(841,·)$, $\chi_{3720}(2999,·)$, $\chi_{3720}(2701,·)$, $\chi_{3720}(721,·)$, $\chi_{3720}(1859,·)$, $\chi_{3720}(2581,·)$, $\chi_{3720}(959,·)$, $\chi_{3720}(1861,·)$, $\chi_{3720}(481,·)$, $\chi_{3720}(1379,·)$, $\chi_{3720}(2341,·)$, $\chi_{3720}(3239,·)$, $\chi_{3720}(1139,·)$, $\chi_{3720}(2761,·)$, $\chi_{3720}(1019,·)$, $\chi_{3720}(2879,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{9} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{6} - \frac{2}{5} a^{2}$, $\frac{1}{185} a^{15} - \frac{14}{185} a^{13} - \frac{1}{185} a^{11} - \frac{63}{185} a^{9} - \frac{1}{37} a^{7} + \frac{66}{185} a^{5} - \frac{13}{185} a^{3} + \frac{1}{37} a$, $\frac{1}{12395} a^{16} - \frac{62}{2479} a^{14} + \frac{1146}{12395} a^{12} + \frac{165}{2479} a^{10} + \frac{3954}{12395} a^{8} + \frac{546}{2479} a^{6} + \frac{2059}{12395} a^{4} - \frac{480}{2479} a^{2} - \frac{26}{67}$, $\frac{1}{12395} a^{17} + \frac{5}{2479} a^{15} - \frac{213}{2479} a^{13} + \frac{98}{2479} a^{11} + \frac{202}{12395} a^{9} + \frac{211}{2479} a^{7} + \frac{1858}{12395} a^{5} + \frac{1128}{2479} a^{3} - \frac{627}{2479} a$, $\frac{1}{635719622153346885241495545380929848315711572118319791995} a^{18} - \frac{3889635906625314946338297585429354311579134910656844}{127143924430669377048299109076185969663142314423663958399} a^{16} + \frac{36217206759968217837367111900916876423581209744020633714}{635719622153346885241495545380929848315711572118319791995} a^{14} - \frac{20845729608174773145679174044212503707063775605209653623}{635719622153346885241495545380929848315711572118319791995} a^{12} + \frac{1455734332233801515183767354517030625129012364076251812}{635719622153346885241495545380929848315711572118319791995} a^{10} + \frac{132538414506359282542231652736266779076884162104890386279}{635719622153346885241495545380929848315711572118319791995} a^{8} + \frac{175765927036331614319230374515689394863626139364847576376}{635719622153346885241495545380929848315711572118319791995} a^{6} + \frac{170454072561253397267403275958327291007803027166200730202}{635719622153346885241495545380929848315711572118319791995} a^{4} + \frac{265406227982640841590736477428646802006891966830039821347}{635719622153346885241495545380929848315711572118319791995} a^{2} + \frac{12803434190134934446591704810039732428944985150364447}{92873575186756301715339013203934236423040404984414871}$, $\frac{1}{266166270001274040647335562417814613542063699572358722111426575} a^{19} + \frac{857538029073569770105610783023039585880758811007752265476}{53233254000254808129467112483562922708412739914471744422285315} a^{17} - \frac{249856472879231382786322774335233524801501636328775552914991}{266166270001274040647335562417814613542063699572358722111426575} a^{15} + \frac{3303472180807716701581155996853132401139402821559621051583308}{53233254000254808129467112483562922708412739914471744422285315} a^{13} + \frac{13076616579249008996579358306221845815325850132574959824425401}{266166270001274040647335562417814613542063699572358722111426575} a^{11} - \frac{22757910724917657697235348116094213019658851768066138491913558}{53233254000254808129467112483562922708412739914471744422285315} a^{9} - \frac{85565444688632080043615674162377334748824220813809173373984696}{266166270001274040647335562417814613542063699572358722111426575} a^{7} - \frac{2779384124185036294087723573244484088436430010172162368761626}{53233254000254808129467112483562922708412739914471744422285315} a^{5} - \frac{955100452993100472447021805582765090378836347595760837898864}{266166270001274040647335562417814613542063699572358722111426575} a^{3} - \frac{99924366859705117083770275838730171011995323444719764922628}{1438736594601481300796408445501700613740884862553290389791495} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{44}\times C_{44}\times C_{10824}$, which has order $2682273792$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24785765.76033278 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-465}) \), \(\Q(\sqrt{-930}) \), \(\Q(\sqrt{2}, \sqrt{-465})\), 5.5.923521.1, 10.10.27947533514866688.1, 10.0.20559450192137769600000.1, 10.0.657902406148408627200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |