Normalized defining polynomial
\( x^{20} - 80 x^{18} + 3469 x^{16} - 11840 x^{14} - 17574 x^{12} + 36316000 x^{10} + 1100798474 x^{8} + 16571144000 x^{6} + 146200889141 x^{4} + 716504608240 x^{2} + 1546528524025 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(443223629840246396758117587996045905756160000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(2371,·)$, $\chi_{3720}(1349,·)$, $\chi_{3720}(3719,·)$, $\chi_{3720}(841,·)$, $\chi_{3720}(2999,·)$, $\chi_{3720}(1709,·)$, $\chi_{3720}(721,·)$, $\chi_{3720}(2131,·)$, $\chi_{3720}(2011,·)$, $\chi_{3720}(481,·)$, $\chi_{3720}(2851,·)$, $\chi_{3720}(869,·)$, $\chi_{3720}(3239,·)$, $\chi_{3720}(3629,·)$, $\chi_{3720}(91,·)$, $\chi_{3720}(1589,·)$, $\chi_{3720}(2761,·)$, $\chi_{3720}(2879,·)$, $\chi_{3720}(959,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} - \frac{3}{16}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{5} - \frac{3}{16} a$, $\frac{1}{80} a^{10} + \frac{1}{40} a^{6} + \frac{1}{80} a^{2}$, $\frac{1}{80} a^{11} + \frac{1}{40} a^{7} + \frac{1}{80} a^{3}$, $\frac{1}{320} a^{12} + \frac{7}{320} a^{8} + \frac{11}{320} a^{4} + \frac{1}{64}$, $\frac{1}{320} a^{13} + \frac{7}{320} a^{9} + \frac{11}{320} a^{5} + \frac{1}{64} a$, $\frac{1}{1600} a^{14} + \frac{3}{1600} a^{10} + \frac{3}{1600} a^{6} - \frac{1}{20} a^{4} + \frac{1}{1600} a^{2} - \frac{1}{20}$, $\frac{1}{1600} a^{15} + \frac{3}{1600} a^{11} + \frac{3}{1600} a^{7} - \frac{1}{20} a^{5} + \frac{1}{1600} a^{3} - \frac{1}{20} a$, $\frac{1}{26156800} a^{16} + \frac{1271}{6539200} a^{14} - \frac{9843}{6539200} a^{12} - \frac{10927}{6539200} a^{10} + \frac{26539}{13078400} a^{8} - \frac{39587}{6539200} a^{6} + \frac{508789}{6539200} a^{4} - \frac{734589}{6539200} a^{2} + \frac{1683901}{5231360}$, $\frac{1}{26156800} a^{17} + \frac{1271}{6539200} a^{15} - \frac{9843}{6539200} a^{13} - \frac{10927}{6539200} a^{11} + \frac{26539}{13078400} a^{9} - \frac{39587}{6539200} a^{7} + \frac{508789}{6539200} a^{5} - \frac{734589}{6539200} a^{3} + \frac{1683901}{5231360} a$, $\frac{1}{45730861251456593402144531635628800} a^{18} - \frac{3226418195850693250865489}{714544707054009271908508306806700} a^{16} + \frac{37123310409074376210470562507}{228654306257282967010722658178144} a^{14} - \frac{11868713666283924617094263253977}{11432715312864148350536132908907200} a^{12} - \frac{56155017061153552298428918234143}{22865430625728296701072265817814400} a^{10} - \frac{105610700074034197917081749469627}{11432715312864148350536132908907200} a^{8} - \frac{64788143709872253513570393637617}{714544707054009271908508306806700} a^{6} + \frac{523908972192944862555925862940661}{11432715312864148350536132908907200} a^{4} - \frac{18829152047155218315729763612260203}{45730861251456593402144531635628800} a^{2} + \frac{894315590044082455765419866761787}{2286543062572829670107226581781440}$, $\frac{1}{56870670398005162271939928819409797536000} a^{19} - \frac{10972347746419439720903923653757}{1137413407960103245438798576388195950720} a^{17} + \frac{2911053008247015504481338646862019211}{14217667599501290567984982204852449384000} a^{15} - \frac{1987645606130722182462721580934018043}{1421766759950129056798498220485244938400} a^{13} + \frac{143927745874835826321040960239465349863}{28435335199002581135969964409704898768000} a^{11} - \frac{10390770457054692399977795327939216391}{2843533519900258113596996440970489876800} a^{9} - \frac{195820955340711622235785442223915665769}{14217667599501290567984982204852449384000} a^{7} + \frac{10437003272715058363430274179854315273}{1421766759950129056798498220485244938400} a^{5} + \frac{13637114212281092213143869166717578003641}{56870670398005162271939928819409797536000} a^{3} + \frac{2190806705895962276507644305225298028087}{5687067039800516227193992881940979753600} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{44}\times C_{44440}$, which has order $500572160$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 243800068.8951959 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{62}) \), \(\Q(\sqrt{-465}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-30}, \sqrt{62})\), 5.5.923521.1, 10.10.866373538960867328.1, 10.0.20559450192137769600000.1, 10.0.21222658262851891200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |