Normalized defining polynomial
\( x^{20} - x^{19} + 82 x^{18} - 56 x^{17} + 2786 x^{16} - 1336 x^{15} + 50567 x^{14} - 24462 x^{13} + 520328 x^{12} - 470435 x^{11} + 2904154 x^{10} - 7038910 x^{9} + 7706052 x^{8} - 61891709 x^{7} + 23769237 x^{6} - 275793293 x^{5} + 334834464 x^{4} - 534644577 x^{3} + 2425731912 x^{2} - 466191748 x + 5938372789 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44181154111269498973595933380126953125=5^{16}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{19} + \frac{778007780187889210590854187525828216446507919900035137993948772386897091411497598}{2302059552298669980369178130950090114824850441055624213506671086372629452403853737} a^{18} + \frac{13327800119398781414890940118455896547069339871014094293548296072378833051677737853}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{17} + \frac{756848661947023476411580955324612229780109614669720085095169677520532299319739766}{2302059552298669980369178130950090114824850441055624213506671086372629452403853737} a^{16} - \frac{10530566646527357613679525018708073591942831933617508790576455027153397264280616048}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{15} + \frac{181023025540188335754478145045271020284247832351068017138328683532925500849857950}{695971492555411854530216644240724918435419900784258483153179630763818206540699967} a^{14} - \frac{2027434687509144117335229691658088035038262513542611719119418869749259160729304713}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{13} - \frac{1746742118697512107121941283581898957107771031147593755914598525352756516904560109}{4275253454268958534971330814621595927531865104817587825083817731834883268750014083} a^{12} - \frac{7065375612119042399225923551048357864011260214725470423054477426053642751003216319}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{11} + \frac{14931644365023789510796342348566752080428026235303442687279641703906805166391486841}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{10} + \frac{320091423423849703663326245527662656469138397009789415347982510813998859622329081}{2302059552298669980369178130950090114824850441055624213506671086372629452403853737} a^{9} + \frac{12190024000268594261684257772817890343331677605960326129696223139120870268702117061}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{8} - \frac{5870400577525126699206772031076289826921628961721033595314411410979439568656370980}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{7} + \frac{9475561572617360235351670884503721785095553105291304337533760071706866325898867086}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{6} - \frac{221180772037539292597074777283552963136245103424966517058108883015621612408346626}{695971492555411854530216644240724918435419900784258483153179630763818206540699967} a^{5} - \frac{1395245608112300482977020589187555953946018401312165731144889081646555773108820962}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{4} - \frac{13422030875141066508588171208819857113506989062154042544551229517040128488383262761}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{3} - \frac{1898393633103916798940660013866990550801384346791454477135351024265749848223454308}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a^{2} - \frac{5605139475902250156176064230556049778051774530904994101343774116001520638940473364}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581} a + \frac{11925414344174718293788263502414698357283460812788007213838116311207029389948317491}{29926774179882709744799315702351171492723055733723114775586724122844182881250098581}$
Class group and class number
$C_{2}\times C_{55382}$, which has order $110764$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 341439.528105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 6029 | Data not computed | ||||||