Normalized defining polynomial
\( x^{20} - 10 x^{19} + 55 x^{18} - 210 x^{17} + 595 x^{16} - 1250 x^{15} + 1740 x^{14} - 510 x^{13} - 5435 x^{12} + 19260 x^{11} - 40229 x^{10} + 57780 x^{9} - 48915 x^{8} - 13770 x^{7} + 140940 x^{6} - 303750 x^{5} + 433755 x^{4} - 459270 x^{3} + 360855 x^{2} - 196830 x + 59049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44136757656250000000000000000=2^{16}\cdot 5^{22}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{11} + \frac{1}{18} a^{10} + \frac{1}{3} a^{9} + \frac{1}{18} a^{8} + \frac{1}{18} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{18} a^{4} - \frac{1}{2} a^{3} + \frac{1}{18} a^{2}$, $\frac{1}{54} a^{13} - \frac{1}{54} a^{12} + \frac{1}{54} a^{11} + \frac{1}{9} a^{10} - \frac{17}{54} a^{9} + \frac{1}{54} a^{8} + \frac{1}{18} a^{7} + \frac{2}{9} a^{6} + \frac{19}{54} a^{5} - \frac{1}{6} a^{4} - \frac{17}{54} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{162} a^{14} - \frac{1}{162} a^{13} + \frac{1}{162} a^{12} + \frac{1}{27} a^{11} + \frac{37}{162} a^{10} - \frac{53}{162} a^{9} + \frac{1}{54} a^{8} - \frac{7}{27} a^{7} - \frac{35}{162} a^{6} - \frac{7}{18} a^{5} - \frac{17}{162} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{486} a^{15} - \frac{1}{486} a^{14} + \frac{1}{486} a^{13} + \frac{1}{81} a^{12} + \frac{37}{486} a^{11} + \frac{109}{486} a^{10} + \frac{55}{162} a^{9} + \frac{20}{81} a^{8} + \frac{127}{486} a^{7} - \frac{25}{54} a^{6} + \frac{145}{486} a^{5} - \frac{7}{27} a^{4} + \frac{7}{27} a^{3}$, $\frac{1}{1458} a^{16} - \frac{1}{1458} a^{15} + \frac{1}{1458} a^{14} + \frac{1}{243} a^{13} + \frac{37}{1458} a^{12} + \frac{109}{1458} a^{11} + \frac{55}{486} a^{10} - \frac{61}{243} a^{9} - \frac{359}{1458} a^{8} - \frac{25}{162} a^{7} + \frac{145}{1458} a^{6} + \frac{20}{81} a^{5} + \frac{34}{81} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{4374} a^{17} - \frac{1}{4374} a^{16} + \frac{1}{4374} a^{15} + \frac{1}{729} a^{14} + \frac{37}{4374} a^{13} + \frac{109}{4374} a^{12} + \frac{55}{1458} a^{11} + \frac{182}{729} a^{10} + \frac{1099}{4374} a^{9} - \frac{187}{486} a^{8} - \frac{1313}{4374} a^{7} - \frac{61}{243} a^{6} + \frac{115}{243} a^{5} - \frac{2}{9} a^{4} - \frac{1}{3} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{13633758} a^{18} + \frac{247}{6816879} a^{17} - \frac{166}{6816879} a^{16} - \frac{1273}{4544586} a^{15} + \frac{15589}{13633758} a^{14} + \frac{29489}{6816879} a^{13} - \frac{55618}{2272293} a^{12} + \frac{118712}{2272293} a^{11} - \frac{1535899}{6816879} a^{10} + \frac{75793}{504954} a^{9} + \frac{210146}{6816879} a^{8} + \frac{235612}{757431} a^{7} + \frac{419189}{1514862} a^{6} - \frac{210613}{504954} a^{5} + \frac{347}{9351} a^{4} - \frac{5897}{18702} a^{3} + \frac{2785}{6234} a^{2} + \frac{443}{6234} a - \frac{518}{1039}$, $\frac{1}{40901274} a^{19} - \frac{1}{40901274} a^{18} - \frac{868}{20450637} a^{17} + \frac{259}{6816879} a^{16} - \frac{19507}{20450637} a^{15} + \frac{28945}{40901274} a^{14} + \frac{56546}{6816879} a^{13} - \frac{304919}{13633758} a^{12} - \frac{1701737}{40901274} a^{11} + \frac{109642}{2272293} a^{10} - \frac{2065391}{40901274} a^{9} + \frac{609458}{2272293} a^{8} + \frac{721112}{2272293} a^{7} - \frac{450577}{1514862} a^{6} + \frac{10013}{56106} a^{5} - \frac{18667}{84159} a^{4} + \frac{4325}{18702} a^{3} - \frac{7691}{18702} a^{2} - \frac{467}{2078} a - \frac{495}{2078}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1633832.53547 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-7})\), 5.5.2450000.1, 10.0.210087500000000.1, 10.0.42017500000000.1, 10.10.30012500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |