Normalized defining polynomial
\( x^{20} - x^{19} + 190 x^{18} - 159 x^{17} + 15169 x^{16} - 10240 x^{15} + 662001 x^{14} - 344561 x^{13} + 17222530 x^{12} - 6541139 x^{11} + 273442709 x^{10} - 68935889 x^{9} + 2603211910 x^{8} - 275733141 x^{7} + 13956163931 x^{6} + 2210211840 x^{5} + 37048706299 x^{4} + 27761073661 x^{3} + 33729031070 x^{2} + 58008735439 x + 106391301391 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4406760492524507138413703843232533837169=3^{10}\cdot 11^{18}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1353=3\cdot 11\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1353}(1,·)$, $\chi_{1353}(901,·)$, $\chi_{1353}(329,·)$, $\chi_{1353}(778,·)$, $\chi_{1353}(206,·)$, $\chi_{1353}(655,·)$, $\chi_{1353}(83,·)$, $\chi_{1353}(983,·)$, $\chi_{1353}(409,·)$, $\chi_{1353}(862,·)$, $\chi_{1353}(614,·)$, $\chi_{1353}(1190,·)$, $\chi_{1353}(40,·)$, $\chi_{1353}(493,·)$, $\chi_{1353}(368,·)$, $\chi_{1353}(245,·)$, $\chi_{1353}(247,·)$, $\chi_{1353}(122,·)$, $\chi_{1353}(124,·)$, $\chi_{1353}(821,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{287891} a^{11} + \frac{110}{287891} a^{9} + \frac{4400}{287891} a^{7} + \frac{77000}{287891} a^{5} - \frac{25782}{287891} a^{3} - \frac{51564}{287891} a - \frac{141863}{287891}$, $\frac{1}{287891} a^{12} + \frac{110}{287891} a^{10} + \frac{4400}{287891} a^{8} + \frac{77000}{287891} a^{6} - \frac{25782}{287891} a^{4} - \frac{51564}{287891} a^{2} - \frac{141863}{287891} a$, $\frac{1}{287891} a^{13} - \frac{7700}{287891} a^{9} - \frac{119109}{287891} a^{7} + \frac{140948}{287891} a^{5} - \frac{94454}{287891} a^{3} - \frac{141863}{287891} a^{2} - \frac{85780}{287891} a + \frac{58816}{287891}$, $\frac{1}{287891} a^{14} - \frac{7700}{287891} a^{10} - \frac{119109}{287891} a^{8} + \frac{140948}{287891} a^{6} - \frac{94454}{287891} a^{4} - \frac{141863}{287891} a^{3} - \frac{85780}{287891} a^{2} + \frac{58816}{287891} a$, $\frac{1}{3166801} a^{15} - \frac{4}{3166801} a^{13} - \frac{1}{3166801} a^{12} + \frac{2}{3166801} a^{11} - \frac{288001}{3166801} a^{10} + \frac{183129}{3166801} a^{9} - \frac{292291}{3166801} a^{8} - \frac{1192300}{3166801} a^{7} - \frac{364891}{3166801} a^{6} + \frac{1355531}{3166801} a^{5} + \frac{1817}{12517} a^{4} + \frac{1227535}{3166801} a^{3} - \frac{473732}{3166801} a^{2} - \frac{1098711}{3166801} a + \frac{11219}{137687}$, $\frac{1}{891923842611447811} a^{16} + \frac{100474820107}{891923842611447811} a^{15} - \frac{606284029300}{891923842611447811} a^{14} - \frac{172028091431}{891923842611447811} a^{13} - \frac{3056279}{81083985691949801} a^{12} - \frac{673061770024}{891923842611447811} a^{11} + \frac{276493526121803466}{891923842611447811} a^{10} - \frac{61268751349029562}{891923842611447811} a^{9} + \frac{421499761772067982}{891923842611447811} a^{8} - \frac{112071946256979057}{891923842611447811} a^{7} + \frac{349115225258174642}{891923842611447811} a^{6} - \frac{16504567975330719}{38779297504845557} a^{5} - \frac{238107488140850393}{891923842611447811} a^{4} + \frac{139093765604574414}{891923842611447811} a^{3} - \frac{52053528589850292}{891923842611447811} a^{2} + \frac{60592624763993336}{891923842611447811} a - \frac{262017723674075283}{891923842611447811}$, $\frac{1}{891923842611447811} a^{17} - \frac{103956355192}{891923842611447811} a^{15} - \frac{247400608093}{891923842611447811} a^{14} - \frac{1063671803110}{891923842611447811} a^{13} + \frac{818926690961}{891923842611447811} a^{12} + \frac{665222289912}{891923842611447811} a^{11} + \frac{258126534762108779}{891923842611447811} a^{10} + \frac{79372429203103275}{891923842611447811} a^{9} - \frac{292416849944235657}{891923842611447811} a^{8} - \frac{137513138247777548}{891923842611447811} a^{7} - \frac{95124131152592436}{891923842611447811} a^{6} + \frac{432517493702928455}{891923842611447811} a^{5} - \frac{401131207554562975}{891923842611447811} a^{4} + \frac{8333136010259795}{891923842611447811} a^{3} - \frac{352394208805443694}{891923842611447811} a^{2} - \frac{55271141181674481}{891923842611447811} a + \frac{284503609899895984}{891923842611447811}$, $\frac{1}{891923842611447811} a^{18} + \frac{123061187253}{891923842611447811} a^{15} + \frac{696563278265}{891923842611447811} a^{14} - \frac{1287888629402}{891923842611447811} a^{13} + \frac{1132644830464}{891923842611447811} a^{12} + \frac{1478794454306}{891923842611447811} a^{11} - \frac{445541205440938542}{891923842611447811} a^{10} - \frac{22676955479751618}{891923842611447811} a^{9} - \frac{8280997318170677}{38779297504845557} a^{8} - \frac{211766349974852477}{891923842611447811} a^{7} - \frac{115917291591943579}{891923842611447811} a^{6} + \frac{220313012106917542}{891923842611447811} a^{5} - \frac{33470510258992163}{891923842611447811} a^{4} - \frac{98277335750300199}{891923842611447811} a^{3} - \frac{2738147875702137}{81083985691949801} a^{2} + \frac{191692582693313191}{891923842611447811} a - \frac{213135887218705005}{891923842611447811}$, $\frac{1}{891923842611447811} a^{19} + \frac{3302962810}{81083985691949801} a^{15} - \frac{732974921213}{891923842611447811} a^{14} - \frac{970718325031}{891923842611447811} a^{13} - \frac{368475406119}{891923842611447811} a^{12} + \frac{1476070913714}{891923842611447811} a^{11} - \frac{171152128934876102}{891923842611447811} a^{10} + \frac{444597394928210269}{891923842611447811} a^{9} - \frac{99210050705702005}{891923842611447811} a^{8} + \frac{109796180276986685}{891923842611447811} a^{7} - \frac{321549634320153439}{891923842611447811} a^{6} - \frac{186125695352092476}{891923842611447811} a^{5} - \frac{224670498411949086}{891923842611447811} a^{4} - \frac{108599289237989578}{891923842611447811} a^{3} - \frac{379474361481891872}{891923842611447811} a^{2} - \frac{57914315124748781}{891923842611447811} a + \frac{321348208612586328}{891923842611447811}$
Class group and class number
$C_{1340130}$, which has order $1340130$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-123}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-451}) \), \(\Q(\sqrt{33}, \sqrt{-123})\), \(\Q(\zeta_{11})^+\), 10.0.6034857761594872683.1, \(\Q(\zeta_{33})^+\), 10.0.273182861635981891.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $41$ | 41.10.5.2 | $x^{10} - 2825761 x^{2} + 810993407$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 41.10.5.2 | $x^{10} - 2825761 x^{2} + 810993407$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |