Normalized defining polynomial
\( x^{20} + 10 x^{18} + 29 x^{16} + 10 x^{14} - 44 x^{12} + 381 x^{10} + 4489 x^{8} + 18337 x^{6} + 30671 x^{4} + 17956 x^{2} + 3359 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4378748240839483381760000000000=2^{20}\cdot 5^{10}\cdot 3359^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3359$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{121} a^{16} - \frac{3}{11} a^{14} + \frac{46}{121} a^{12} + \frac{12}{121} a^{10} + \frac{46}{121} a^{8} - \frac{29}{121} a^{6} + \frac{50}{121} a^{4} - \frac{25}{121} a^{2} + \frac{3}{121}$, $\frac{1}{121} a^{17} - \frac{3}{11} a^{15} + \frac{46}{121} a^{13} + \frac{12}{121} a^{11} + \frac{46}{121} a^{9} - \frac{29}{121} a^{7} + \frac{50}{121} a^{5} - \frac{25}{121} a^{3} + \frac{3}{121} a$, $\frac{1}{4072769798977} a^{18} + \frac{15057920899}{4072769798977} a^{16} - \frac{869019128954}{4072769798977} a^{14} + \frac{634820519068}{4072769798977} a^{12} - \frac{1730350604520}{4072769798977} a^{10} + \frac{1493023342384}{4072769798977} a^{8} + \frac{1037098584139}{4072769798977} a^{6} - \frac{1208338444377}{4072769798977} a^{4} - \frac{856985617009}{4072769798977} a^{2} - \frac{258348590041}{4072769798977}$, $\frac{1}{4072769798977} a^{19} + \frac{15057920899}{4072769798977} a^{17} - \frac{869019128954}{4072769798977} a^{15} + \frac{634820519068}{4072769798977} a^{13} - \frac{1730350604520}{4072769798977} a^{11} + \frac{1493023342384}{4072769798977} a^{9} + \frac{1037098584139}{4072769798977} a^{7} - \frac{1208338444377}{4072769798977} a^{5} - \frac{856985617009}{4072769798977} a^{3} - \frac{258348590041}{4072769798977} a$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 423470.438941 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 800 |
| The 44 conjugacy class representatives for t20n168 |
| Character table for t20n168 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1343600.1, 10.6.35259003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 3359 | Data not computed | ||||||