Normalized defining polynomial
\( x^{20} - 3 x^{19} + 17 x^{18} - 60 x^{17} + 255 x^{16} - 423 x^{15} + 1269 x^{14} - 798 x^{13} + 3933 x^{12} + 2679 x^{11} + 8229 x^{10} + 6138 x^{9} + 6384 x^{8} + 4176 x^{7} + 3372 x^{6} + 1314 x^{5} + 708 x^{4} + 144 x^{3} + 80 x^{2} + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43774679639190704400000000000000=2^{16}\cdot 3^{18}\cdot 5^{14}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{298} a^{17} - \frac{3}{149} a^{16} + \frac{3}{149} a^{15} + \frac{23}{298} a^{14} + \frac{3}{298} a^{13} + \frac{51}{149} a^{12} - \frac{29}{149} a^{11} + \frac{73}{298} a^{10} - \frac{113}{298} a^{9} - \frac{40}{149} a^{8} + \frac{5}{149} a^{7} - \frac{11}{298} a^{6} - \frac{51}{149} a^{5} + \frac{24}{149} a^{4} - \frac{7}{149} a^{3} - \frac{20}{149} a^{2} + \frac{57}{149} a - \frac{51}{149}$, $\frac{1}{1316266} a^{18} - \frac{2183}{1316266} a^{17} - \frac{208793}{1316266} a^{16} - \frac{11660}{658133} a^{15} - \frac{92189}{188038} a^{14} - \frac{70201}{1316266} a^{13} - \frac{99187}{1316266} a^{12} + \frac{196450}{658133} a^{11} - \frac{501883}{1316266} a^{10} - \frac{448419}{1316266} a^{9} - \frac{617467}{1316266} a^{8} - \frac{13827}{94019} a^{7} - \frac{237131}{658133} a^{6} + \frac{246343}{658133} a^{5} + \frac{172884}{658133} a^{4} + \frac{205641}{658133} a^{3} - \frac{195399}{658133} a^{2} - \frac{290573}{658133} a - \frac{302746}{658133}$, $\frac{1}{1010397948504693132943449422} a^{19} - \frac{120458347752475753605}{505198974252346566471724711} a^{18} - \frac{350726528106715540638008}{505198974252346566471724711} a^{17} + \frac{104168509876546083028894693}{505198974252346566471724711} a^{16} + \frac{60351174245185402212516179}{505198974252346566471724711} a^{15} - \frac{251685150930793296354863867}{1010397948504693132943449422} a^{14} - \frac{16264866844011309519817756}{505198974252346566471724711} a^{13} - \frac{128748936470633790981462143}{505198974252346566471724711} a^{12} + \frac{204878026536640178839179238}{505198974252346566471724711} a^{11} - \frac{134421632953375848295934521}{1010397948504693132943449422} a^{10} + \frac{212553077240634229066719280}{505198974252346566471724711} a^{9} + \frac{186632350838657918870107597}{505198974252346566471724711} a^{8} + \frac{30969287979808695353525131}{1010397948504693132943449422} a^{7} + \frac{312166298892819853245934395}{1010397948504693132943449422} a^{6} - \frac{30301766051727757718223439}{72171282036049509495960673} a^{5} - \frac{174150981545917423676781706}{505198974252346566471724711} a^{4} - \frac{245401434750063144181543423}{505198974252346566471724711} a^{3} - \frac{125016674265541234691042774}{505198974252346566471724711} a^{2} + \frac{233764332768364030044045791}{505198974252346566471724711} a - \frac{109035393326606620079316202}{505198974252346566471724711}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85235565.63719633 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-15}, \sqrt{21})\), 5.1.162000.1, 10.0.2205414540000000.2, 10.0.393660000000.1, 10.2.1323248724000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |