Normalized defining polynomial
\( x^{20} - 2 x^{19} + 5 x^{18} + 2 x^{17} + 2 x^{16} + 8 x^{15} + 21 x^{14} + 14 x^{13} + 45 x^{12} - 12 x^{11} + 144 x^{10} - 43 x^{9} + 147 x^{8} - 63 x^{7} + 113 x^{6} - 42 x^{5} + 44 x^{4} - 15 x^{3} + 12 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(436648932933622896181640625=3^{10}\cdot 5^{10}\cdot 27517559^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 27517559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{11845037414953} a^{19} - \frac{4251585145408}{11845037414953} a^{18} - \frac{3493871650566}{11845037414953} a^{17} - \frac{1571344720462}{11845037414953} a^{16} + \frac{689049859313}{11845037414953} a^{15} + \frac{2302141905055}{11845037414953} a^{14} + \frac{5205314653625}{11845037414953} a^{13} + \frac{5634782736059}{11845037414953} a^{12} - \frac{1206122581855}{11845037414953} a^{11} - \frac{1909759651601}{11845037414953} a^{10} - \frac{4837045546219}{11845037414953} a^{9} - \frac{1378455818952}{11845037414953} a^{8} - \frac{5860630068548}{11845037414953} a^{7} - \frac{2873583381792}{11845037414953} a^{6} + \frac{1563294869133}{11845037414953} a^{5} - \frac{1275686212303}{11845037414953} a^{4} + \frac{1009813017576}{11845037414953} a^{3} - \frac{2416826229708}{11845037414953} a^{2} + \frac{338667135601}{11845037414953} a + \frac{4040077202071}{11845037414953}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4445828551289}{11845037414953} a^{19} - \frac{9115288207092}{11845037414953} a^{18} + \frac{22278689477411}{11845037414953} a^{17} + \frac{8991715116542}{11845037414953} a^{16} + \frac{5699800065648}{11845037414953} a^{15} + \frac{36096970502482}{11845037414953} a^{14} + \frac{92383871656097}{11845037414953} a^{13} + \frac{54744863726066}{11845037414953} a^{12} + \frac{191532866542614}{11845037414953} a^{11} - \frac{59102636321240}{11845037414953} a^{10} + \frac{632101248853966}{11845037414953} a^{9} - \frac{201474228570437}{11845037414953} a^{8} + \frac{603863491281561}{11845037414953} a^{7} - \frac{239814036465975}{11845037414953} a^{6} + \frac{457413820316399}{11845037414953} a^{5} - \frac{146772847114444}{11845037414953} a^{4} + \frac{152314241362690}{11845037414953} a^{3} - \frac{21259049322422}{11845037414953} a^{2} + \frac{38476179395432}{11845037414953} a + \frac{2606582401394}{11845037414953} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 218812.807689 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n656 are not computed |
| Character table for t20n656 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.8.85992371875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 27517559 | Data not computed | ||||||