Normalized defining polynomial
\( x^{20} + 291 x^{18} + 34523 x^{16} + 2164086 x^{14} + 77860477 x^{12} + 1637220249 x^{10} + 19617373055 x^{8} + 123475672018 x^{6} + 342449474695 x^{4} + 347793632904 x^{2} + 34507149121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43542784730387716079982562074992896000000000000=2^{20}\cdot 5^{12}\cdot 257^{4}\cdot 431^{4}\cdot 1031^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $214.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 257, 431, 1031$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1293} a^{14} + \frac{97}{431} a^{12} - \frac{388}{1293} a^{10} + \frac{466}{1293} a^{8} - \frac{104}{1293} a^{6} - \frac{487}{1293} a^{4} - \frac{34}{431} a^{2} + \frac{1}{3}$, $\frac{1}{1293} a^{15} + \frac{97}{431} a^{13} - \frac{388}{1293} a^{11} + \frac{466}{1293} a^{9} - \frac{104}{1293} a^{7} - \frac{487}{1293} a^{5} - \frac{34}{431} a^{3} + \frac{1}{3} a$, $\frac{1}{1671849} a^{16} - \frac{571}{1671849} a^{14} + \frac{340964}{1671849} a^{12} - \frac{102112}{1671849} a^{10} + \frac{184577}{557283} a^{8} - \frac{730601}{1671849} a^{6} - \frac{54839}{1671849} a^{4} - \frac{311}{3879} a^{2} + \frac{1}{9}$, $\frac{1}{1671849} a^{17} - \frac{571}{1671849} a^{15} + \frac{340964}{1671849} a^{13} - \frac{102112}{1671849} a^{11} + \frac{184577}{557283} a^{9} - \frac{730601}{1671849} a^{7} - \frac{54839}{1671849} a^{5} - \frac{311}{3879} a^{3} + \frac{1}{9} a$, $\frac{1}{1021998928816701098571305744251898845742046} a^{18} + \frac{111813741257832915539856983992893113}{510999464408350549285652872125949422871023} a^{16} - \frac{26028926321328971373337982234019633895}{113555436535189010952367304916877649526894} a^{14} - \frac{38822303207840762202073350166048843429165}{113555436535189010952367304916877649526894} a^{12} - \frac{71216813313556667159010096094008360653767}{510999464408350549285652872125949422871023} a^{10} - \frac{416686687079643723403723963013886936706817}{1021998928816701098571305744251898845742046} a^{8} - \frac{3582695458621968441700187739338595065602}{56777718267594505476183652458438824763447} a^{6} - \frac{585597668135920123560411992060625302426}{1185613606515894545906387174306147152833} a^{4} + \frac{2535792609657839225481048301312646747}{5501687269215287916038919602348710686} a^{2} + \frac{2025652718666053142017737092543635}{12764935659432222543013734576215106}$, $\frac{1}{1021998928816701098571305744251898845742046} a^{19} + \frac{111813741257832915539856983992893113}{510999464408350549285652872125949422871023} a^{17} - \frac{26028926321328971373337982234019633895}{113555436535189010952367304916877649526894} a^{15} - \frac{38822303207840762202073350166048843429165}{113555436535189010952367304916877649526894} a^{13} - \frac{71216813313556667159010096094008360653767}{510999464408350549285652872125949422871023} a^{11} - \frac{416686687079643723403723963013886936706817}{1021998928816701098571305744251898845742046} a^{9} - \frac{3582695458621968441700187739338595065602}{56777718267594505476183652458438824763447} a^{7} - \frac{585597668135920123560411992060625302426}{1185613606515894545906387174306147152833} a^{5} + \frac{2535792609657839225481048301312646747}{5501687269215287916038919602348710686} a^{3} + \frac{2025652718666053142017737092543635}{12764935659432222543013734576215106} a$
Class group and class number
$C_{2}\times C_{4}\times C_{25464776}$, which has order $203718208$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12637712.6049 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.1096992360765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 257 | Data not computed | ||||||
| 431 | Data not computed | ||||||
| 1031 | Data not computed | ||||||