Normalized defining polynomial
\( x^{20} - 8 x^{18} - 40 x^{16} + 854 x^{14} - 1776 x^{12} + 22450 x^{10} + 44085 x^{8} - 124860 x^{6} - 18230 x^{4} + 479520 x^{2} + 39605 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43294334715274231808000000000000000=2^{30}\cdot 5^{15}\cdot 6029^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{35049051687310360983291109636} a^{18} + \frac{3344008878999652382048744683}{35049051687310360983291109636} a^{16} - \frac{1729925724064172740626160886}{8762262921827590245822777409} a^{14} + \frac{613841494193466549401208623}{8762262921827590245822777409} a^{12} - \frac{1}{4} a^{11} + \frac{2153097480582741945246612878}{8762262921827590245822777409} a^{10} - \frac{1}{2} a^{9} - \frac{3565557912179958540759597915}{35049051687310360983291109636} a^{8} + \frac{2265421020462643688064083952}{8762262921827590245822777409} a^{6} - \frac{1}{4} a^{5} - \frac{12762403039196616390753105781}{35049051687310360983291109636} a^{4} + \frac{7151677615574113829010165135}{35049051687310360983291109636} a^{2} - \frac{1}{4} a + \frac{1461201936571106531884759689}{35049051687310360983291109636}$, $\frac{1}{3119365600170622127512908757604} a^{19} + \frac{81886934246655122869372877204}{779841400042655531878227189401} a^{17} - \frac{261025327629256808091365188405}{3119365600170622127512908757604} a^{15} - \frac{1}{4} a^{14} - \frac{95157209151716559605248134253}{1559682800085311063756454378802} a^{13} - \frac{1}{4} a^{12} - \frac{578459225840117578689139634891}{3119365600170622127512908757604} a^{11} - \frac{1}{4} a^{10} + \frac{615956757032755133060126008377}{1559682800085311063756454378802} a^{9} + \frac{1}{4} a^{8} - \frac{1103745706990253386467236395135}{3119365600170622127512908757604} a^{7} + \frac{1}{4} a^{6} - \frac{18524560872997437027878136911}{779841400042655531878227189401} a^{5} + \frac{602985556299850250544959028947}{3119365600170622127512908757604} a^{3} + \frac{1}{4} a^{2} - \frac{524274573373084308217481884851}{3119365600170622127512908757604} a + \frac{1}{4}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 255633320.075 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.753625.1, 10.2.2907907280000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||