Normalized defining polynomial
\( x^{20} - 2 x^{19} + 243 x^{18} - 512 x^{17} + 29939 x^{16} - 53446 x^{15} + 2420331 x^{14} - 3057836 x^{13} + 139893917 x^{12} - 97484958 x^{11} + 5970317223 x^{10} - 1101238746 x^{9} + 188810021443 x^{8} + 39816797608 x^{7} + 4332722462127 x^{6} + 1938921689882 x^{5} + 68428126663536 x^{4} + 34326601914734 x^{3} + 665515140558396 x^{2} + 239656306415480 x + 2993279551691929 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(432835576015865621834099207027388579840000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(1349,·)$, $\chi_{3720}(2441,·)$, $\chi_{3720}(3629,·)$, $\chi_{3720}(2509,·)$, $\chi_{3720}(1549,·)$, $\chi_{3720}(401,·)$, $\chi_{3720}(2321,·)$, $\chi_{3720}(3161,·)$, $\chi_{3720}(709,·)$, $\chi_{3720}(481,·)$, $\chi_{3720}(1069,·)$, $\chi_{3720}(869,·)$, $\chi_{3720}(721,·)$, $\chi_{3720}(2761,·)$, $\chi_{3720}(1709,·)$, $\chi_{3720}(1589,·)$, $\chi_{3720}(841,·)$, $\chi_{3720}(2681,·)$, $\chi_{3720}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{201} a^{16} + \frac{25}{201} a^{15} - \frac{22}{201} a^{14} + \frac{8}{67} a^{13} + \frac{28}{201} a^{12} - \frac{2}{67} a^{11} + \frac{2}{67} a^{10} - \frac{70}{201} a^{9} + \frac{79}{201} a^{8} + \frac{13}{67} a^{7} + \frac{10}{67} a^{6} - \frac{50}{201} a^{5} + \frac{43}{201} a^{4} + \frac{11}{201} a^{3} + \frac{100}{201} a^{2} + \frac{1}{3} a + \frac{12}{67}$, $\frac{1}{201} a^{17} + \frac{23}{201} a^{15} - \frac{29}{201} a^{14} + \frac{31}{201} a^{13} + \frac{31}{201} a^{12} + \frac{22}{201} a^{11} - \frac{19}{201} a^{10} + \frac{29}{67} a^{9} + \frac{74}{201} a^{8} - \frac{74}{201} a^{7} + \frac{4}{201} a^{6} + \frac{20}{201} a^{5} + \frac{25}{67} a^{4} + \frac{31}{67} a^{3} + \frac{46}{201} a^{2} - \frac{31}{201} a - \frac{32}{67}$, $\frac{1}{69747} a^{18} + \frac{76}{69747} a^{17} + \frac{109}{69747} a^{16} - \frac{2507}{23249} a^{15} - \frac{3998}{69747} a^{14} - \frac{2983}{23249} a^{13} - \frac{1579}{69747} a^{12} - \frac{3620}{69747} a^{11} - \frac{1330}{23249} a^{10} + \frac{4175}{23249} a^{9} + \frac{4606}{23249} a^{8} - \frac{27458}{69747} a^{7} + \frac{17443}{69747} a^{6} - \frac{32453}{69747} a^{5} + \frac{5806}{69747} a^{4} - \frac{507}{23249} a^{3} + \frac{17224}{69747} a^{2} + \frac{7799}{69747} a + \frac{1146}{23249}$, $\frac{1}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{19} - \frac{27477073921985897932217987858962300888023172057511041201949580788426935051915077573409553}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{18} + \frac{12626515452234634294605903879895090019719965220149718793541395089878835432843663277253529409}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{17} - \frac{25808016106588613072478473058361570229498187431436562610785637400992081822965755521743591966}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{16} + \frac{363032496604555242889161139293208191297667251971559464473579551294557737557218117748391608350}{6167871828166793683901738223942525646235607559255016074164479611874953453697954368532423917631} a^{15} - \frac{2859369505315125957143431077249537557701589259220349256689792227739636417330259953949020718880}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{14} - \frac{2998126294239333266287449425776569946678786816347987861293424927852997377639699536828904089339}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{13} - \frac{311032447138606219584682922485272893846095575590244810843884682942639656267990696571746179850}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{12} + \frac{5616535651452438015913977296277343668851857657342481906641439489649379724006282454354973789}{53324540301153835883876699342442584837771823278861810439462359756843977985861276961375422919} a^{11} + \frac{2928021641576611838870656367298229734055502752425169881831921089115749240135190019116478909627}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{10} - \frac{5719928220214477203834542988929309034399270970799455182018977731780736129108933323505178605309}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{9} + \frac{6331754468251133827873234776320581622764229493108048521692580366849836567751960771799329253214}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{8} + \frac{1978118202293638174519288775114741974175204942572919471490034389296556702238069586019570697984}{6167871828166793683901738223942525646235607559255016074164479611874953453697954368532423917631} a^{7} - \frac{605478865152180692604605730932007895286615544272541082640366221522826510006518267600200438123}{6167871828166793683901738223942525646235607559255016074164479611874953453697954368532423917631} a^{6} + \frac{814560184818093016348624780189303233179719897376499158052957334160583805086393646618948664700}{6167871828166793683901738223942525646235607559255016074164479611874953453697954368532423917631} a^{5} - \frac{7761520070033018828069561654503051673914205604011327893535710754401483209522843639292096971046}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{4} + \frac{4591912108459701189892349898705339053257289721647195754936729649136367080639886909675541208881}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{3} + \frac{7657988955240622486429845400930605291330936633571404468444499384271073535739960229982796338939}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893} a^{2} + \frac{123133326243357430676079506491960186377627376905363379949478928814098398407700334519893653257}{6167871828166793683901738223942525646235607559255016074164479611874953453697954368532423917631} a + \frac{3651616273058614318715482570684413352360634909447699194593005847185632418142565430641436714977}{18503615484500381051705214671827576938706822677765048222493438835624860361093863105597271752893}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{4}\times C_{404}\times C_{2020}$, which has order $208916480$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12967416.87984626 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-310}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{93}) \), \(\Q(\sqrt{-30}, \sqrt{93})\), 5.5.923521.1, 10.0.2707417309252710400000.1, 10.0.21222658262851891200000.1, 10.10.6424828185043053.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |