Normalized defining polynomial
\( x^{20} - 16 x^{18} + 26 x^{16} - 936 x^{14} + 17713 x^{12} + 1048 x^{10} + 159924 x^{8} - 319648 x^{6} + 499776 x^{4} + 910336 x^{2} + 1048576 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43245808601363782342974430143053824=2^{20}\cdot 727^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{80} a^{12} + \frac{1}{80} a^{10} + \frac{3}{80} a^{8} - \frac{9}{80} a^{6} - \frac{1}{4} a^{5} - \frac{1}{5} a^{4} + \frac{1}{4} a^{3} + \frac{3}{20} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{160} a^{13} + \frac{1}{160} a^{11} + \frac{3}{160} a^{9} + \frac{11}{160} a^{7} - \frac{9}{40} a^{5} - \frac{7}{40} a^{3} + \frac{3}{10} a$, $\frac{1}{320} a^{14} - \frac{1}{320} a^{13} + \frac{1}{320} a^{12} - \frac{1}{320} a^{11} + \frac{3}{320} a^{10} - \frac{3}{320} a^{9} + \frac{11}{320} a^{8} - \frac{11}{320} a^{7} - \frac{9}{80} a^{6} - \frac{11}{80} a^{5} + \frac{13}{80} a^{4} - \frac{13}{80} a^{3} - \frac{1}{10} a^{2} + \frac{7}{20} a$, $\frac{1}{320} a^{15} + \frac{1}{160} a^{11} + \frac{1}{40} a^{9} + \frac{33}{320} a^{7} - \frac{9}{40} a^{5} - \frac{1}{4} a^{4} + \frac{19}{80} a^{3} - \frac{1}{4} a^{2} + \frac{7}{20} a$, $\frac{1}{8960} a^{16} - \frac{1}{320} a^{13} - \frac{17}{4480} a^{12} - \frac{1}{320} a^{11} + \frac{43}{2240} a^{10} - \frac{3}{320} a^{9} + \frac{15}{256} a^{8} - \frac{11}{320} a^{7} - \frac{127}{2240} a^{6} - \frac{11}{80} a^{5} + \frac{373}{2240} a^{4} + \frac{27}{80} a^{3} - \frac{43}{112} a^{2} - \frac{3}{20} a + \frac{2}{35}$, $\frac{1}{71680} a^{17} - \frac{3}{2560} a^{15} + \frac{53}{35840} a^{13} - \frac{1}{160} a^{12} - \frac{61}{4480} a^{11} - \frac{1}{160} a^{10} + \frac{199}{10240} a^{9} - \frac{3}{160} a^{8} + \frac{193}{3584} a^{7} - \frac{11}{160} a^{6} - \frac{379}{3584} a^{5} + \frac{9}{40} a^{4} - \frac{579}{4480} a^{3} - \frac{13}{40} a^{2} - \frac{61}{280} a + \frac{1}{5}$, $\frac{1}{19556038301104190771200} a^{18} + \frac{27726812234505619}{977801915055209538560} a^{16} - \frac{4999090263468542027}{9778019150552095385600} a^{14} - \frac{1}{320} a^{13} + \frac{32534104682716043}{34921496966257483520} a^{12} - \frac{1}{320} a^{11} + \frac{356503021852382031793}{19556038301104190771200} a^{10} - \frac{3}{320} a^{9} + \frac{220595731071922245129}{4889009575276047692800} a^{8} + \frac{29}{320} a^{7} - \frac{28054040572259426763}{977801915055209538560} a^{6} - \frac{11}{80} a^{5} - \frac{29575306118535996089}{174607484831287417600} a^{4} + \frac{37}{80} a^{3} + \frac{3231219831626170991}{9548846826711030650} a^{2} + \frac{1}{10} a + \frac{1745110179230090004}{4774423413355515325}$, $\frac{1}{156448306408833526169600} a^{19} + \frac{1388727280053}{24445047876380238464} a^{17} + \frac{109587071657063825773}{78224153204416763084800} a^{15} - \frac{11685199214117428653}{3911207660220838154240} a^{13} - \frac{1}{160} a^{12} - \frac{1616561556741165787087}{156448306408833526169600} a^{11} - \frac{1}{160} a^{10} + \frac{343767170449045821957}{19556038301104190771200} a^{9} - \frac{3}{160} a^{8} + \frac{8012134454402456799}{1117487902920239472640} a^{7} - \frac{11}{160} a^{6} + \frac{782005559665047663181}{4889009575276047692800} a^{5} + \frac{9}{40} a^{4} - \frac{864171973128838819723}{2444504787638023846400} a^{3} - \frac{13}{40} a^{2} - \frac{13344961814221690939}{152781549227376490400} a + \frac{1}{5}$
Class group and class number
$C_{11}\times C_{143}$, which has order $1573$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11753995129}{15479302717276160} a^{19} + \frac{12025706041}{967456419829760} a^{17} - \frac{34724623265}{1547930271727616} a^{15} + \frac{266272007209}{386982567931904} a^{13} - \frac{211201525301033}{15479302717276160} a^{11} + \frac{931556113617}{386982567931904} a^{9} - \frac{342909078305733}{3869825679319040} a^{7} + \frac{130469015565981}{483728209914880} a^{5} - \frac{5716334234949}{48372820991488} a^{3} - \frac{13685749653241}{15116506559840} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1212427478.64 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{727}) \), \(\Q(\sqrt{-727}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{727})\), 5.5.8456464.1 x5, 10.10.207956266078624768.1, 10.0.51989066519656192.1 x5, 10.0.286047133533184.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 727 | Data not computed | ||||||