Normalized defining polynomial
\( x^{20} - 10 x^{19} + 49 x^{18} - 156 x^{17} + 346 x^{16} - 524 x^{15} + 408 x^{14} + 398 x^{13} - 1876 x^{12} + 3014 x^{11} - 1248 x^{10} - 5888 x^{9} + 16570 x^{8} - 24156 x^{7} + 24605 x^{6} - 19546 x^{5} + 13529 x^{4} - 8244 x^{3} + 6426 x^{2} - 3698 x + 1621 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(429600776840936568436030050304=2^{12}\cdot 17^{2}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{4}{9} a^{10} - \frac{4}{9} a^{9} + \frac{4}{9} a^{7} - \frac{4}{9} a^{6} - \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9}$, $\frac{1}{36} a^{16} + \frac{5}{36} a^{14} + \frac{1}{36} a^{13} + \frac{1}{12} a^{12} + \frac{5}{36} a^{11} - \frac{1}{9} a^{10} + \frac{1}{6} a^{9} + \frac{1}{9} a^{8} + \frac{5}{36} a^{7} - \frac{4}{9} a^{6} + \frac{7}{18} a^{5} - \frac{7}{36} a^{4} - \frac{7}{36} a^{3} + \frac{1}{4} a^{2} - \frac{11}{36} a - \frac{5}{12}$, $\frac{1}{36} a^{17} + \frac{1}{36} a^{15} + \frac{1}{36} a^{14} - \frac{5}{36} a^{13} + \frac{1}{36} a^{12} - \frac{1}{9} a^{11} - \frac{7}{18} a^{10} + \frac{2}{9} a^{9} + \frac{5}{36} a^{8} + \frac{1}{9} a^{7} - \frac{1}{6} a^{6} - \frac{1}{12} a^{5} - \frac{1}{12} a^{4} + \frac{13}{36} a^{3} + \frac{5}{36} a^{2} + \frac{1}{4} a + \frac{2}{9}$, $\frac{1}{6708093119548812} a^{18} - \frac{1}{745343679949868} a^{17} + \frac{5346961099651}{559007759962401} a^{16} + \frac{58008853595894}{1677023279887203} a^{15} - \frac{8483670034379}{394593712914636} a^{14} + \frac{302983542152213}{6708093119548812} a^{13} - \frac{7607476978478}{186335919987467} a^{12} + \frac{435931694354225}{6708093119548812} a^{11} + \frac{1424855529143005}{3354046559774406} a^{10} - \frac{2897878311505805}{6708093119548812} a^{9} - \frac{60564596326787}{2236031039849604} a^{8} - \frac{550139401411579}{6708093119548812} a^{7} + \frac{365981583193095}{745343679949868} a^{6} - \frac{549349328928745}{1118015519924802} a^{5} + \frac{1612220250271639}{6708093119548812} a^{4} + \frac{2396182016971}{394593712914636} a^{3} + \frac{1877933856547991}{6708093119548812} a^{2} - \frac{192137467569241}{3354046559774406} a + \frac{1059765904301155}{6708093119548812}$, $\frac{1}{1294661972072920716} a^{19} + \frac{29}{431553990690973572} a^{18} + \frac{197029842186625}{215776995345486786} a^{17} - \frac{1285580332709719}{431553990690973572} a^{16} + \frac{18681438275985949}{431553990690973572} a^{15} - \frac{86616124691606767}{647330986036460358} a^{14} + \frac{4754193874938585}{143851330230324524} a^{13} + \frac{53015092635190}{35962832557581131} a^{12} - \frac{113872714193042807}{1294661972072920716} a^{11} - \frac{219761758123061989}{1294661972072920716} a^{10} + \frac{108082686360468917}{1294661972072920716} a^{9} - \frac{107240097574365815}{431553990690973572} a^{8} - \frac{543634542872273}{4230921477362486} a^{7} + \frac{118070796435212603}{647330986036460358} a^{6} - \frac{51706674190382077}{1294661972072920716} a^{5} - \frac{3698268278853031}{107888497672743393} a^{4} - \frac{30720170313656}{35962832557581131} a^{3} - \frac{30301397150676521}{143851330230324524} a^{2} + \frac{2175914252002874}{323665493018230179} a + \frac{55712554576006531}{1294661972072920716}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3792079.9415 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.3104644.1, 10.2.655439376938048.1, 10.6.163859844234512.1, 10.2.38555257466944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 881 | Data not computed | ||||||