Normalized defining polynomial
\( x^{20} - 3 x^{19} + 2 x^{18} + 6 x^{17} - 14 x^{16} + 7 x^{15} + 10 x^{14} - 12 x^{13} - 11 x^{12} + 14 x^{11} + 30 x^{10} - 56 x^{9} + 16 x^{8} + 38 x^{7} + 8 x^{6} - 106 x^{5} + 111 x^{4} - 25 x^{3} - 40 x^{2} + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(428717762000000000000000=2^{16}\cdot 5^{15}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{7} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{8} - \frac{2}{5} a^{3}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{9} - \frac{2}{5} a^{4}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{17} + \frac{2}{25} a^{16} - \frac{1}{25} a^{14} - \frac{1}{25} a^{12} - \frac{2}{25} a^{11} + \frac{6}{25} a^{9} - \frac{1}{5} a^{8} - \frac{12}{25} a^{7} + \frac{11}{25} a^{6} - \frac{2}{5} a^{5} + \frac{12}{25} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{475} a^{18} - \frac{6}{475} a^{17} - \frac{31}{475} a^{16} + \frac{44}{475} a^{15} - \frac{47}{475} a^{14} - \frac{6}{475} a^{13} + \frac{31}{475} a^{12} + \frac{11}{475} a^{11} - \frac{29}{475} a^{10} + \frac{72}{475} a^{9} - \frac{227}{475} a^{8} + \frac{12}{475} a^{7} + \frac{62}{475} a^{6} - \frac{2}{25} a^{5} - \frac{9}{25} a^{4} - \frac{5}{19} a^{3} + \frac{5}{19} a^{2} - \frac{8}{19} a + \frac{3}{19}$, $\frac{1}{13775} a^{19} - \frac{7}{13775} a^{18} + \frac{146}{13775} a^{17} - \frac{723}{13775} a^{16} + \frac{384}{13775} a^{15} + \frac{164}{2755} a^{14} - \frac{1008}{13775} a^{13} + \frac{569}{13775} a^{12} + \frac{758}{13775} a^{11} - \frac{89}{13775} a^{10} + \frac{5287}{13775} a^{9} - \frac{6791}{13775} a^{8} - \frac{4662}{13775} a^{7} + \frac{2446}{13775} a^{6} + \frac{328}{725} a^{5} + \frac{3618}{13775} a^{4} - \frac{1109}{2755} a^{3} + \frac{196}{551} a^{2} + \frac{125}{551} a + \frac{225}{551}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3354}{2755} a^{19} + \frac{1233}{551} a^{18} + \frac{89}{551} a^{17} - \frac{19816}{2755} a^{16} + \frac{24256}{2755} a^{15} + \frac{1031}{551} a^{14} - \frac{29017}{2755} a^{13} + \frac{359}{145} a^{12} + \frac{9404}{551} a^{11} + \frac{6592}{2755} a^{10} - \frac{95262}{2755} a^{9} + \frac{4181}{145} a^{8} + \frac{42468}{2755} a^{7} - \frac{83304}{2755} a^{6} - \frac{6696}{145} a^{5} + \frac{213689}{2755} a^{4} - \frac{120294}{2755} a^{3} - \frac{67493}{2755} a^{2} + \frac{11789}{551} a + \frac{14701}{551} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33038.0055622 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 10 conjugacy class representatives for $C_5:F_5$ |
| Character table for $C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.2.292820000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |