Normalized defining polynomial
\( x^{20} + 60 x^{18} - 20 x^{17} + 2445 x^{16} - 204 x^{15} + 75350 x^{14} + 15920 x^{13} + 1793970 x^{12} + 812240 x^{11} + 33249096 x^{10} + 20522700 x^{9} + 473428615 x^{8} + 326939720 x^{7} + 5007659530 x^{6} + 3305115036 x^{5} + 36987800005 x^{4} + 19586049980 x^{3} + 169841406000 x^{2} + 52695486900 x + 363424022857 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(427004953041945600000000000000000000000000000000=2^{40}\cdot 3^{10}\cdot 5^{32}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4200=2^{3}\cdot 3\cdot 5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4200}(1,·)$, $\chi_{4200}(1091,·)$, $\chi_{4200}(3781,·)$, $\chi_{4200}(841,·)$, $\chi_{4200}(1931,·)$, $\chi_{4200}(1681,·)$, $\chi_{4200}(2771,·)$, $\chi_{4200}(2521,·)$, $\chi_{4200}(3611,·)$, $\chi_{4200}(671,·)$, $\chi_{4200}(3361,·)$, $\chi_{4200}(421,·)$, $\chi_{4200}(1511,·)$, $\chi_{4200}(1261,·)$, $\chi_{4200}(2351,·)$, $\chi_{4200}(2101,·)$, $\chi_{4200}(3191,·)$, $\chi_{4200}(251,·)$, $\chi_{4200}(2941,·)$, $\chi_{4200}(4031,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{11} - \frac{2}{7} a^{10} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{13} + \frac{3}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{77} a^{15} + \frac{4}{77} a^{13} - \frac{4}{77} a^{12} + \frac{30}{77} a^{10} - \frac{38}{77} a^{9} + \frac{17}{77} a^{8} - \frac{23}{77} a^{7} + \frac{3}{11} a^{6} - \frac{20}{77} a^{5} - \frac{25}{77} a^{4} + \frac{20}{77} a^{3} - \frac{25}{77} a^{2} - \frac{1}{11} a + \frac{4}{11}$, $\frac{1}{539} a^{16} - \frac{2}{539} a^{15} - \frac{29}{539} a^{14} - \frac{1}{539} a^{13} + \frac{8}{539} a^{12} - \frac{24}{77} a^{11} + \frac{155}{539} a^{10} + \frac{258}{539} a^{9} + \frac{185}{539} a^{8} + \frac{67}{539} a^{7} - \frac{23}{77} a^{6} - \frac{128}{539} a^{5} + \frac{37}{539} a^{4} + \frac{177}{539} a^{3} + \frac{25}{77} a^{2} + \frac{17}{77} a + \frac{2}{11}$, $\frac{1}{539} a^{17} + \frac{2}{539} a^{15} + \frac{18}{539} a^{14} - \frac{8}{539} a^{13} + \frac{16}{539} a^{12} - \frac{258}{539} a^{11} + \frac{155}{539} a^{10} + \frac{141}{539} a^{9} - \frac{123}{539} a^{8} - \frac{139}{539} a^{7} - \frac{23}{539} a^{6} + \frac{236}{539} a^{5} - \frac{239}{539} a^{4} - \frac{80}{539} a^{3} + \frac{19}{77} a^{2} + \frac{13}{77} a + \frac{2}{11}$, $\frac{1}{844861979074417907029273} a^{18} - \frac{98559884117969355238}{844861979074417907029273} a^{17} - \frac{81831254809931832983}{844861979074417907029273} a^{16} - \frac{494139667042248613112}{76805634461310718820843} a^{15} + \frac{20211964856405339506640}{844861979074417907029273} a^{14} - \frac{34186577389096863293058}{844861979074417907029273} a^{13} - \frac{457005671523452812832}{844861979074417907029273} a^{12} + \frac{116324491824840026649528}{844861979074417907029273} a^{11} - \frac{289960521993612714432536}{844861979074417907029273} a^{10} - \frac{349943307841540035453156}{844861979074417907029273} a^{9} - \frac{177284455455273809620106}{844861979074417907029273} a^{8} - \frac{420930748725478970554292}{844861979074417907029273} a^{7} + \frac{16164935192916144007381}{76805634461310718820843} a^{6} - \frac{364553884782564932021969}{844861979074417907029273} a^{5} + \frac{8586621804716312784366}{76805634461310718820843} a^{4} + \frac{378470915886897784754835}{844861979074417907029273} a^{3} + \frac{25863786663855979801689}{120694568439202558147039} a^{2} - \frac{49266868869869845352255}{120694568439202558147039} a - \frac{4168795148841758841147}{17242081205600365449577}$, $\frac{1}{454415734883445072416486174461936728799942101794685124777} a^{19} - \frac{82188207972727195000192790817582}{454415734883445072416486174461936728799942101794685124777} a^{18} + \frac{6384002820847042010723947417849626497778402951698246}{41310521353040461128771470405630611709085645617698647707} a^{17} + \frac{256542473267311806799523216508995807693297805073461833}{454415734883445072416486174461936728799942101794685124777} a^{16} - \frac{36692620896559904961703580115826648768767262878700003}{9273790507825409641152779070651769975509022485605818873} a^{15} + \frac{1414576336854605965424651143309723745623168805697221675}{64916533554777867488069453494562389828563157399240732111} a^{14} + \frac{8103867439065043117134570940060329712306796227738730082}{454415734883445072416486174461936728799942101794685124777} a^{13} + \frac{30987769649969821851199653337629120310730397467349802828}{454415734883445072416486174461936728799942101794685124777} a^{12} - \frac{1183926478049503705751119769923611001952818244324689338}{9273790507825409641152779070651769975509022485605818873} a^{11} + \frac{129628045963825265161469182137852502659292027828303490342}{454415734883445072416486174461936728799942101794685124777} a^{10} - \frac{178948614804382568978810648014446521934080186650045511822}{454415734883445072416486174461936728799942101794685124777} a^{9} - \frac{143442250770396070190993729483286583583625935523841286298}{454415734883445072416486174461936728799942101794685124777} a^{8} - \frac{99131763868354473465200600249725026366363532806898167565}{454415734883445072416486174461936728799942101794685124777} a^{7} + \frac{56208008987165195232223502696200274824416170774198101981}{454415734883445072416486174461936728799942101794685124777} a^{6} - \frac{137214771386990383279324129862465821111243146396799115227}{454415734883445072416486174461936728799942101794685124777} a^{5} - \frac{186771498007459923546466064705006132948775484516394809632}{454415734883445072416486174461936728799942101794685124777} a^{4} + \frac{74212169207482096271109442804608529650284165371352682689}{454415734883445072416486174461936728799942101794685124777} a^{3} - \frac{14897231407962501806812949635515477702416493452932501590}{64916533554777867488069453494562389828563157399240732111} a^{2} + \frac{32012801373196311138803192624186153255902181257653386328}{64916533554777867488069453494562389828563157399240732111} a + \frac{1685598130234764532574541690893489761472058190738901120}{9273790507825409641152779070651769975509022485605818873}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{214210}$, which has order $219351040$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{2}, \sqrt{-21})\), 5.5.390625.1, 10.0.20420505000000000000000.1, 10.10.5000000000000000.1, 10.0.638140781250000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.10.16.7 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 95 x^{5} + 5 x^{4} + 80 x^{3} + 5 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ |
| 5.10.16.7 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 95 x^{5} + 5 x^{4} + 80 x^{3} + 5 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |