Properties

Label 20.0.42666846923...0000.5
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{34}\cdot 31^{18}$
Root discriminant $678.43$
Ramified primes $2, 5, 31$
Class number $1051348820$ (GRH)
Class group $[1051348820]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![231470329794201, 0, 92497694344560, 0, 84852613700100, 0, 3416821527060, 0, 70829063500, 0, 4959064482, 0, 266205060, 0, -1454675, 0, -7440, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 7440*x^16 - 1454675*x^14 + 266205060*x^12 + 4959064482*x^10 + 70829063500*x^8 + 3416821527060*x^6 + 84852613700100*x^4 + 92497694344560*x^2 + 231470329794201)
 
gp: K = bnfinit(x^20 - 7440*x^16 - 1454675*x^14 + 266205060*x^12 + 4959064482*x^10 + 70829063500*x^8 + 3416821527060*x^6 + 84852613700100*x^4 + 92497694344560*x^2 + 231470329794201, 1)
 

Normalized defining polynomial

\( x^{20} - 7440 x^{16} - 1454675 x^{14} + 266205060 x^{12} + 4959064482 x^{10} + 70829063500 x^{8} + 3416821527060 x^{6} + 84852613700100 x^{4} + 92497694344560 x^{2} + 231470329794201 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(426668469237698387780255274047851562500000000000000000000=2^{20}\cdot 5^{34}\cdot 31^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $678.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3100=2^{2}\cdot 5^{2}\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{3100}(1,·)$, $\chi_{3100}(709,·)$, $\chi_{3100}(1799,·)$, $\chi_{3100}(841,·)$, $\chi_{3100}(2571,·)$, $\chi_{3100}(1549,·)$, $\chi_{3100}(2851,·)$, $\chi_{3100}(29,·)$, $\chi_{3100}(159,·)$, $\chi_{3100}(481,·)$, $\chi_{3100}(419,·)$, $\chi_{3100}(1511,·)$, $\chi_{3100}(39,·)$, $\chi_{3100}(1961,·)$, $\chi_{3100}(1131,·)$, $\chi_{3100}(1069,·)$, $\chi_{3100}(1391,·)$, $\chi_{3100}(1521,·)$, $\chi_{3100}(2689,·)$, $\chi_{3100}(2079,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{9} a^{4} - \frac{7}{27} a^{2} + \frac{1}{3}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{2511} a^{10} + \frac{1}{27} a^{6} + \frac{11}{81} a^{4} + \frac{2}{27} a^{2} + \frac{1}{3}$, $\frac{1}{2511} a^{11} + \frac{1}{27} a^{7} + \frac{11}{81} a^{5} + \frac{2}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{429381} a^{12} - \frac{49}{429381} a^{10} - \frac{46}{4617} a^{8} - \frac{199}{13851} a^{6} + \frac{1717}{13851} a^{4} - \frac{332}{1539} a^{2} + \frac{46}{171}$, $\frac{1}{429381} a^{13} - \frac{49}{429381} a^{11} + \frac{11}{4617} a^{9} - \frac{712}{13851} a^{7} + \frac{2230}{13851} a^{5} - \frac{1}{171} a^{3} + \frac{8}{171} a$, $\frac{1}{429381} a^{14} - \frac{10}{429381} a^{10} + \frac{221}{13851} a^{8} - \frac{113}{4617} a^{6} + \frac{604}{13851} a^{4} + \frac{619}{1539} a^{2} - \frac{26}{171}$, $\frac{1}{94034439} a^{15} + \frac{61}{94034439} a^{13} + \frac{18034}{94034439} a^{11} + \frac{3602}{3033369} a^{9} + \frac{102947}{3033369} a^{7} + \frac{353633}{3033369} a^{5} - \frac{12565}{337041} a^{3} - \frac{3262}{37449} a$, $\frac{1}{48239667207} a^{16} + \frac{38386}{48239667207} a^{14} + \frac{48694}{48239667207} a^{12} - \frac{5219236}{48239667207} a^{10} + \frac{12093635}{1556118297} a^{8} - \frac{7168141}{1556118297} a^{6} - \frac{2395571}{57634011} a^{4} - \frac{2393200}{6403779} a^{2} - \frac{4994}{29241}$, $\frac{1}{12011677134543} a^{17} + \frac{46081}{12011677134543} a^{15} + \frac{11865136}{12011677134543} a^{13} + \frac{461268593}{12011677134543} a^{11} - \frac{258133219}{387473455953} a^{9} - \frac{19224328717}{387473455953} a^{7} + \frac{859823707}{14350868739} a^{5} + \frac{193425056}{1594540971} a^{3} - \frac{195616466}{531513657} a$, $\frac{1}{272024290343258695588909816436223120635096343} a^{18} - \frac{440710344210509744030267826094868}{272024290343258695588909816436223120635096343} a^{16} + \frac{85945421339942681704999974783513900571}{272024290343258695588909816436223120635096343} a^{14} - \frac{250214772304899614128129550023057016278}{272024290343258695588909816436223120635096343} a^{12} + \frac{23193226566890965729839594344334192390791}{272024290343258695588909816436223120635096343} a^{10} - \frac{143219410499152549562993169622643128890301}{8774977107847054696416445691491068407583753} a^{8} + \frac{79013493197964512531966973031419279760726}{2924992369282351565472148563830356135861251} a^{6} - \frac{613077854233826246320785616870799113519}{5701739511271640478503213574718043149827} a^{4} - \frac{4261371052279360614898611761359998249805}{12037005634906796565729006435515868871857} a^{2} + \frac{169660661473739042464310757661537501}{662210795780755711378610685785105841}$, $\frac{1}{8432753000641019563256204309522916739687986633} a^{19} + \frac{3540600814030887828249589824662}{90674763447752898529636605478741040211698781} a^{17} - \frac{145414036659412880584095311314869293}{30224921149250966176545535159580346737232927} a^{15} - \frac{52568006254345537696682360381384123879}{272024290343258695588909816436223120635096343} a^{13} - \frac{2549091088479298127098563751092838874075}{90674763447752898529636605478741040211698781} a^{11} - \frac{14990191602151871481151568213494988375875}{10074973716416988725515178386526782245744309} a^{9} + \frac{4832240989309007979754925259389006930843}{105722615757193430077306574596277932621491} a^{7} - \frac{950680291151262098889886624640280263761}{17105218533814921435509640724154129449481} a^{5} - \frac{5666537047276830778795299162703683814379}{36111016904720389697187019306547606615571} a^{3} - \frac{208530494275389636499710520657085488351}{12037005634906796565729006435515868871857} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{1051348820}$, which has order $1051348820$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 410236188355566.6 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-155}) \), \(\Q(\sqrt{31}) \), \(\Q(\sqrt{-5}, \sqrt{31})\), 5.5.360750390625.2, 10.0.666321123000781250000000000.3, 10.0.20171830872093963623046875.4, 10.10.4131190962604843750000000000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.10.17.1$x^{10} - 5 x^{8} + 5$$10$$1$$17$$C_{10}$$[2]_{2}$
5.10.17.1$x^{10} - 5 x^{8} + 5$$10$$1$$17$$C_{10}$$[2]_{2}$
31Data not computed